ELE 491 Senior Design Project Proposal

These slides are loosely based on the book Design for Electrical and Computer Engineers by Ford and Coulston. I have used the sources referenced in the book freely and without re-attribution. Please see the book for full source attribution

ELE 491 Senior Design Project Proposal

Class 3 – Decision Systems

- Why do we need decision systems?
 - It is very rare that the solution to a problem is obvious
 - So rare that if you think it is, you should move forward very cautiously
 - There are often competing requirements that need to be considered
 - Cost vs. Performance
 - Quality vs. Cost
 - Schedule vs. Quality
 - Decision systems provide an ordered process to weigh the competing requirements and choose a solution

- Informal Decision Systems
 - What's for dinner?
 - Mac-n-cheese and a hotdog
 - Cheap
 - Easy
 - 5 min in the microwave
 - Unhealthy
 - Chicken kabobs and a salad
 - More expensive
 - Difficult
 - 45 mins
 - healthy

- Weekday or weekend?
- Test tomorrow?
- Just me?
- Do I have the ingredients or do I need to get them?
- Do I have any cash?
- What have I had earlier in the week?

- Formal Decision Systems
 - Helpful at the personal level when making important decisions
 - College
 - Car
 - Home
 - Necessary in the business world
 - Always someone to justify your decisions to
 - Boss
 - Sr. Management
 - Stock holders
 - Impacts profits
 - Impacts strategy
 - Impacts jobs

- Formal Decision Systems
 - Many different approaches
 - Vary by company
 - Vary by project
 - Vary by team
 - Most have very similar attributes
 - Selection criteria
 - Criteria weightings
 - Possible solutions
 - Rating based on criteria
 - Scoring
 - Review
 - Vary by level of detail

- Analytical Hierarchy Process (AHP)
 - Method used in the text
 - Similar to most methods

		Solution 1	Solution 2		Solution n
Criteria 1	ω_1	α ₁₁	α ₁₂		α_{1n}
Criteria 2	ω2	α ₂₁	α ₂₂		α _{2n}
•	•	20 10 0-01 2 million	Visit Correct Proved	•	
•	•			•	
•	•			•	•
Criteria m	ω _m	α_{m1}	α _{m2}		α _{mn}
Score		$S_1 = \sum_{i=1}^m \omega_i \alpha_{i1}$	$S_2 = \sum_{i=1}^m \omega_i \alpha_{i2}$		$S_n = \sum_{i=1}^m \omega_i \alpha_{in}$

Criteria

- What are the "things" you will look at to make your decision
- These come from:
 - Marketing requirements*
 - Standards requirements
 - Performance specifications
 - Strategic considerations
 - Manufacturing requirements
 - Quality requirements
 - Intangibles

EX. Cell Phone Design Nov 1, production ramp LTE, UMTS, GSM 24hr battery life w/given profile Special Verizon features < 3 operator required tasks Survive 4 ft. drop "cool" color

* Many of the other criteria stem from marketing requirements

- Criteria Weighting
 - Pairwise Comparison
 - Each criteria is compared against each of the others
 - Scale: relative importance of criteria
 - MORE: 1=equal, 3=moderate, 5=strong, 7=very strong, 9=extreme
 - LESS: 1/3=moderate, 1/5=strong, 1/7=very strong, 1/9=extreme
 - The geometric mean for each criteria is calculated to reduce rating inconsistencies
 - The means for all criteria are normalized to a sum of 1 → individual weights

- Criteria Weighting
 - Book example selection of a car
 - Criteria:
 - Purchase cost, Safety, Design, Brand
 - Cost is moderately more important than Design
 - Brand Name is extremely less important than safety

	/				/
		Purchase Cost	Safety	Design	Brand Name
Purchas	e/Cost	1	1	3 🖌	7
Safety	/	1	1	5	9
Design /	/	1/3	1/5	1	3
Brand N	ame	1/7	_ 1/9	1/3	1

- Criteria Weighting
 - Book example selection of a car
 - Quick Check
 - Diagonals should be anti-symmetric
 - Consistency
 - Purchase cost and Safety are equal but
 - · Purchase cost is moderately more important than Design
 - Safety is strongly more important than Design → inconsistencies

finitian.	Purchase Cost	Safety	Design	Brand Name	Geometric Mean	Weight ω _i
Purchase Cost	1	1	3	7	2.1	0.38
Safety	1	1	5	9	2.6	0.46
Design	1/3	1/5		3	0.7	0.12
Brand Name	1/7	1/9	1/3		0.3	0.05

- Solution Rating
 - A rating mechanism is needed for each criteria
 - Cost \rightarrow \$
 - Design → Subjective
 - Safety → NHTSA ratings
 - Brand Name → J.D. Powers Brand Ranking
 - Ratings are normalized
 - Sum of all ratings for each criteria is normalized to 1
 - Care must be taken to ensure proper emphasis
 - If bigger is better normalize the rating
 - If smaller is better normalize 1/rating
 - This ensures the ratings do not bias the weightings previously calculated

Solution Rating

Cost

	Honda	Hyundai	Toyota
	CRV	Tucson	RAV4
Cost	\$21,026	\$18,183	\$21,989
Cost α	0.32	0.37	0.31

• Safety

NHTSA	Honda Hyundai		Toyota
Rating	CRV	Tucson	RAV4
Rating	4.8	4.8 4.6	
Safety α	0.34	0.34	0.32

- Solution Rating
 - Design

DESIGN	Honda	Hyundai	Toyota	Geometric	Design
DESIGN	CRV	Tucson	RAV4	Mean	α
Honda CRV	1	1/3	1/5	0.41	0.11
Hyundai Tucson	3	1	1/2	1.14	0.31
Toyota RAV4	5	2	1	2.15	0.58

• Brand

transfer and the	Honda	Hyundai	Toyota
JD Powers*	CRV	Tucson	RAV4
Rating	8.8	2.4	8.8
Brand α	0.44	0.12	0.44

* fictitious data

- Scoring
 - Build out the AHP table with calculated weightings and ratings

Car Select	ion Matrix	Honda CRV	Hyundai Tucson	Toyota RAV4
The second lines	Weight	U.V.	Tuesen	
Cost	0.37	0.32	0.37	0.31
Safety	0.46	0.34	0.34	0.32
Design	0.12	0.11	0.31	0.58
Brand	0.05	0.44	0.12	0.44
Sco	ore	0.31	0.34	0.35

Review

- What do the final ratings mean
- · What is the margin or error
- What is significant
- If no clear winner either
 - Review criteria and add additional measures
 - Provide alternatives to next level decision makers

- Hierarchical Decision Processes
 - Additional levels of analysis within the given set of criteria
 - e.g. Cost → purchase + operating + insurance, ...
 - Addition levels of decision
 - e.g. Car, # doors, convertible, engine selection, trim level
 - e.g. Processor type, # cores, chip supplier, memory

In Class Activity