ELE 491 Senior Design Project Proposal

These slides are loosely based on the book Design for Electrical and Computer Engineers by Ford and Coulston. I have used the sources referenced in the book freely and without re-attribution. Please see the book for full source attribution

ELE 491 Senior Design Project Proposal

Class 8 – Functional Decomposition

Functional Decomposition Overview

- Project Flow
 - Identify problems
 - Create requirements
 - Generate/evaluate conceptual solutions
 - Decomposition
 - Modeling and Design
 - Validation
 - Delivery

Functional Decomposition Descriptive Design Process

- Design
 - Hierarchical system design
 - Up/Down sub-system design
 - Detailed block, module, circuit, and software design
 - Heavy reliance on models and simulation tools
 - Tight feedback with prototyping phase

Functional Decomposition Definition

- Functional Decomposition
 - Recursive process that iteratively describes the functionality of all the systems components
 - Breaks the system into manageable pieces
 - Allows for multiple design teams to work independently
 - Crosses HW/SW boundaries
 - Utilizes a wide range of descriptive systems
 - Hierarchical
 - Top level level 0
 - Bottom level detail level level N

Functional Decomposition Definition

- Functional Decomposition
 - Three primary elements describe each block/module within the functional decomposition
 - Inputs
 - Outputs
 - Function (transformation, transfer function, operation performed)
 - Inputs/Outputs can be described by:
 - Voltages, currents, impedances, logic levels, ...
 - Complex signals, data items, parameters, ...
 - Function can be described by:
 - Words, block diagrams, flow charts, state diagrams, circuits, ...

Functional Decomposition Implementation

- Implementation
 - Quality module definitions can make or break a project
 - Reduce work due to clear specifications and targets
 - Reduce rework due to misunderstandings
 - Between modules
 - Between teams
 - Allow the system to be developed independent of any physical or logical constraints
 - Reduces time wasted waiting
 - Maximizes use of resources

Functional Decomposition Implementation

- Implementation
 - Iterative
 - Up \rightarrow Down and Down \rightarrow Up
 - Takes time
 - Right sized not too much detail
 - Look for innovation at every level
 - Maximize Cohesion to minimize Coupling

Audio Power Amplifier

- System Requirements
 - Accept an audio input signal source with a maximum input voltage of 0.5V peak
 - Have adjustable volume control between zero volume and the maximum volume level
 - Deliver a maximum of 50W to an 8Ω speaker
 - Be powered by a standard 120V 60Hz AC outlet

Audio Power Amplifier

- Audio Amplifier
 - Level 1 Buffer amp

		<u> </u>	Audio Amplifier Desig	n		_	
audio input signal	Buffer Amplifier	buffared input	High Gain Amplifier DC voltages	voltage amplified signal	Power Output Stage]_ .	audio output signal
			Power Supply				
-00-			power 120 VAC]			

Module	Buffer Amplifier	
Inputs	 Audio input signal: 0.5V peak. Power: ± <u>25</u>V DC. 	
Outputs	- Audio signal: 0.5V peak.	
Functionality	Buffer the input signal and provide unity voltage gain. It should have an input resistance $> 1M\Omega$ and an output resistance $< 100\Omega$.	

- Audio Amplifier
 - Level 1 High gain amp

	and Ampiner Design	
udio input signal	Buffer Amplifier High Gain Amplifier Power Output Stage DC voltages Power Supply	audio output signal

Module	High Gain Amplifier	
Inputs	 Audio input signal: 0.5V peak. User volume control: variable control. Power: ± 25V DC 	
Outputs	- Audio signal: <u>20</u> V peak.	
Functionality	Provide an adjustable voltage gain, between <u>1 and 40</u> . It should have an input resistance > <u>100k</u> Ω and an output resistance < <u>100</u> Ω .	
ELE 491 – Spring 2015	13 C	

Audio Amplifier Design Audio Amplifier voltage buffered amplified input audio input signal audio output Buffer Amplifier High Gain Amplifier Power Output Stage signal signal Level 1 – Power Output Stage • DC voltages Power Supply power, 120 VAC

Module	Power Output Stage	
Inputs	 Audio input signal: <u>20</u>V peak. Power: ± <u>25</u>V DC 	
Outputs	- Audio signal: <u>20</u> V peak at up to <u>2.5</u> A	
Functionality	Provide unity voltage gain with output current as required by a resistive load of up to 2.5A It should have an input resistance >1M Ω and an output resistance <1 Ω .	

- Audio Amplifier Design Audio Amplifier voltage buffered amplified input audio input audio output signal Buffer Amplifier High Gain Amplifier Power Output Stage signal signal Level 1 – Power Supply DC voltages Power Supply wer, 120 VAC Power Output Stage Module 120V AC rms Inputs
- Outputs Power +/- 25V DC with up to 3.0A of current with a regulation of <1%
- *Functionality* Convert AC wall outlet voltage to positive and negative DC output voltages, and provide enough current to drive all amplifiers

Audio Amplifier Design Audio Amplifier voltage buffered amplified input audio input audio output signal Buffer Amplifier High Gain Amplifier Power Output Stage signal signal Level 2 – Power Supply • DC voltages Power Supply wer, 120 VAC

In Class Activity