
ELE 655

Microprocessor System Design

Class 3 – ISA

2 © tjELE 655– Fall 2015

Instruct Set Architecture

• 3 applications areas

• Desktop
• Performance is key

• Code size is no longer a concern

• both integer and floating point instructions

• Servers
• Focus is on database, file server and WEB applications

• Integers and characters are primary data types

• little emphasis on floating point

• Mobile / Embedded
• Power and code size are critical

• Floating point is optional

3 © tjELE 655 – Fall 2015 Copyright © 2011, Elsevier Inc. All rights Reserved.

Figure A.1 Operand locations for four instruction set architecture classes. The arrows indicate whether the operand is an input

or the result of the arithmetic-logical unit (ALU) operation, or both an input and result. Lighter shades indicate inputs, and the dark

shade indicates the result. In (a), a Top Of Stack register (TOS) points to the top input operand, which is combined with the

operand below. The first operand is removed from the stack, the result takes the place of the second operand, and TOS is updated to

point to the result. All operands are implicit. In (b), the Accumulator is both an implicit input operand and a result. In (c), one input

operand is a register, one is in memory, and the result goes to a register. All operands are registers in (d) and, like the stack

architecture, can be transferred to memory only via separate instructions: push or pop for (a) and load or store for (d).

4 © tjELE 655– Fall 2015

Instruct Set Architecture

• GPR architectures dominate

• Registers are fast
• Local to processor

• Logic based instead of memory based

• Registers enhance compiler options
• Reorder calculations

• Not possible on a stack based machine

5 © tjELE 655– Fall 2015

Instruct Set Architecture

• Memory as an operand

6 © tjELE 655– Fall 2015

Instruct Set Architecture

• Interpreting Memory Addresses

• Big vs Little Endian
• SDRAEKCAB

• Byte Addressed

• Byte / word aligned

7 © tjELE 655– Fall 2015

Instruct Set Architecture

• Addressing Modes

8 © tjELE 655– Fall 2015

Instruct Set Architecture

• Addressing Modes

9 © tjELE 655– Fall 2015

Instruct Set Architecture

• Addressing Modes

• Displacement – How big?

positive

negative

What does a displacement of 0 mean?

10 © tjELE 655– Fall 2015

Instruct Set Architecture

• Addressing Modes

• Immediates – how often?

11 © tjELE 655– Fall 2015

Instruct Set Architecture

• Addressing Modes

• Immediates – how big?

20-30% negative

12 © tjELE 655– Fall 2015

Instruct Set Architecture

• Operands

• Integers
• 2’s compliment

• Byte(8), half word(16), word(32), doubleword(64)

• Floating Point
• IEEE 754 standard

• Single precision (32), double precision (64)

• Characters
• ASCII – 8 bits

• Unicode – 16 bits

• BCD

13 © tjELE 655– Fall 2015

Instruct Set Architecture

• Operands

14 © tjELE 655– Fall 2015

Instruct Set Architecture

• Operations

15 © tjELE 655– Fall 2015

Instruct Set Architecture

• Operations

16 © tjELE 655– Fall 2015

Instruct Set Architecture

• Operations – control flow

17 © tjELE 655– Fall 2015

Instruct Set Architecture

• Operations – control flow

• Branches addresses are known at compile time – PC relative

18 © tjELE 655– Fall 2015

Instruct Set Architecture

• Operations – condition testing

19 © tjELE 655– Fall 2015

Instruct Set Architecture

• Operations – condition testing

20 © tjELE 655– Fall 2015

Instruct Set Architecture

• Instruction Encoding

• Flexibility

• Code Size

• Implementation of decode

40% code size reduction

21 © tjELE 655– Fall 2015

Instruct Set Architecture

• Compilers

22 © tjELE 655– Fall 2015

Instruct Set Architecture

• A.5

• A.8

• A.10

• A.11

• A.22

23 © tjELE 655– Fall 2015

Instruct Set Architecture

• A.5

• A = B + C ;The operands here are given, not computed

• by the code, so copy propagation will not

• transform this statement.

• 2. B = A + C ;Here A is a computed value, so transform

• the code by substituting

• A = B + C to get

• = B + C + C ;Now no operand is computed

• 3. D = A – B ;Both operands are computed so substitute

• for both to get

• = (B + C) – (B + C + C) ;Simplify algebraically to get

• = – C ;This is a given, not computed, operand

24 © tjELE 655– Fall 2015

Instruct Set Architecture

• A.8

25 © tjELE 655– Fall 2015

Instruct Set Architecture

• A.10

Reasons to increase the number of registers include:

1. Greater freedom to employ compilation techniques that consume registers,

such as loop unrolling, common subexpression elimination, and avoiding

name dependences.

2. More locations that can hold values to pass to subroutines.

3. Reduced need to store and re-load values.

Reasons not to increase the number of registers include:

1. More bits needed to represent a register name, thus increasing the overall

size of an instruction or reducing the size of some other field(s) in the

instruction.

2. More CPU state to save in the event of an exception.

3. Increased chip area and increased power consumption.

26 © tjELE 655– Fall 2015

Instruct Set Architecture

• A.11

• 44 40

• 56 48

27 © tjELE 655– Fall 2015

Instruct Set Architecture

• A.22

c. 4F4D, 5055, and 5455. Other misaligned 2-byte words would contain data

from outside the given 64 bits.

d. 52 55 54 4D, 55 54 4D 50, and 54 4D 50 43. Other misaligned 4-byte words

would contain data from outside the given 64 bits.

