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Problems to be tackled efficiently and new applications have a strong say in defining

how memory architectures must evolve. With large data as a defining theme, this paper

discusses how processor and system architecture is likely to continue to change to move

to a form where rapid retrievability will become a critical characteristic.
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ABSTRACT | Computer memories continue to serve the role

that they first served in the electronic discrete variable

automatic computer (EDVAC) machine documented by John

von Neumann, namely that of supplying instructions and

operands for calculations in a timely manner. As technology

has made possible significantly larger and faster machines with

multiple processors, the relative distance in processor cycles of

this memory has increased considerably. Microarchitectural

techniques have evolved to share this memory across ever-

larger systems of processors with deep cache hierarchies and

have managed to hide this latency for many applications, but

are proving to be expensive and energy-inefficient for newer

types of problems working on massive amounts of data. New

paradigms include scale-out systems distributed across hun-

dreds and even thousands of nodes, in-memory databases that

keep data in memory much longer than the duration of a single

task, and near-data computation, where some of the compu-

tation is off-loaded to the location of the data to avoid wasting

energy in the movement of data. This paper provides a histori-

cal perspective on the evolution of memory architecture, and

suggests that the requirements of new problems and new

applications are likely to fundamentally change processor and

system architecture away from the currently established von

Neumann model.
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I . INTRODUCTION

The central processing unit (CPU) of a computer is often

considered the heart of the computer, the part of the

computer through which data are streamed and trans-

formed in the course of a calculation. As such it is also given

pride of place, with the arithmetic power of a system often

being used as a metric of performance of the system. How-

ever, the computational capability of a system is dependent
not just on the number of calculations that it can perform in

a second, but also on the capability and efficiency of staging

data to these calculations. These data include not only the

input data and parameters needed to solve the problem but

also auxiliary tables that need to be referenced, as well as

data produced in the course of calculations that need to be

coursed back through the computational units.

There is another important item needed in completing
calculations, and that is the recipe precisely describing the

calculations needed, their order, and their dependence on

the results of previous calculations. This recipe for the

successful completion of a task, or program, is specified as

a sequence of steps called instructions, typically saved in

some external medium and brought into the computer

along with other items of input data when the program

needs to be executed.
All this information needed by a computation is today

brought into a central place called the memory of the com-
puter, much as in the early electronic discrete variable
automatic computer (EDVAC) [1]. Access to instructions
and data must be fast, so that the expensive calculating
units are well utilized during the course of the program.
Indeed, in the early days of computing, access to this
memory was as fast, if not faster, as the rate of performing
the actual calculations. But as computers became faster and
as the size of problems grew both in input size and in the
complexity of instructions, access to memory became
steadily slower than the rate of computations. This led to

Manuscript received November 7, 2014; revised April 14, 2015; accepted May 6, 2015.

Date of publication July 7, 2015; date of current version July 15, 2015.

The author is with the IBM Thomas J. Watson Research Center, Yorktown Heights,

NY 10598 USA (e-mail: nair@us.ibm.com).

Digital Object Identifier: 10.1109/JPROC.2015.2435018

0018-9219 � 2015 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

Vol. 103, No. 8, August 2015 | Proceedings of the IEEE 1331



proposals, such as data-flow architectures [2], where the
recipe for the calculation was not a sequential set of steps
and where the data were not centralized, but rather were
distributed in parallel among the computational elements
of the computer. Such proposals did not succeed commer-
cially, as computer engineers found ways of predicting the
instructions and data that the computational elements
would need, and located them appropriately in time for
them to be processed on the various units of the machine.
Thus, today’s computers supplement the main memory of
the computer with a set of local registers and one or more
levels of cache in a memory hierarchy, where the cache
level closest to the calculating engine is small and fast, but
contains only a subset of the contents of memory.

The resulting machines have become quite
sophisticatedVand complexVand the community is
once again asking whether it is efficient to keep data in a
central location and move it to processing units which
keep getting further away. Cost and energy have not been
serious concerns as long as Moore’s law [3] kept giving us
steadily increasing transistor densities and as long as
Dennard scaling [4] kept power requirements low. With
the end of Dennard scaling, the focus of concern is shifting
to the energy expended in moving data back and forth from
memory shared by multiple processors across large sys-
tems. Thus, there is a trend toward partitioning the
memory across distinct compute nodes and performing
multiple tasks in parallel, analogous to the old data-flow
proposals. This paradigm appears to particularly suit the
computation needs of workloads dealing with large vol-
umes of unstructured data.

This paper will describe this new trend and examine
specifically the evolution of the role of main memory. The
organization of the paper is as follows. Section II presents a
brief history to understand how the organization of the
computer evolved to the form it is today. Section III de-
scribes the memory hierarchy developed by processor de-
signers to combat the problem of increasing memory
latency. Section IV discusses memory reliability, while
Section V introduces storage-class memories which bridge
the gap between DRAM and disks. This is then followed in
Section VI by a description of the change in the volume and
nature of data and the changing role of data in the modern
world. Section VII describes near-data computation, the
trend toward offloading computation to processing units
nearer the data, while Section VIII describes how advances
in 3-D technology are reviving interest in processing-in-
memory. Section IX argues that dense memories in new
technologies are likely to be exploited better when appli-
cations tolerate approximate solutions. Section X examines
the possibilities of integrating memories and computing
more tightly in a post-von Neumann world.

II . EVOLUTION OF MAIN MEMORY

In 1945, during the early days of computing, John von

Neumann wrote a draft of the design of a computer called

the EDVAC [1] which had a memory unit attached to an
arithmetic unit and a control unit. The memory unit was in

addition to the teletype, magnetic tape, punched card, or

other storage unit that stored the problem code, para-

meters of the problem, and tables needed in the solution of

the problem. Von Neumann stated that memory elements

‘‘that only circulate in the interior of the device, and never

be recorded for human sensing’’ were needed in the ma-

chine for the following reasons:
1) to remember intermediate results during complex

arithmetic operations like multiplication and

division;

2) to store the instructions for a complex calculation;

3) to provide tables for functions in order to avoid

repeated complex calculations;

4) to remember initial conditions and boundary condi-

tions for solutions of partial differential equations;
5) to store results of one or more iterations in a suc-

cessive approximation algorithm for use in later

iterations.

Von Neumann argued that even though the nature of

operations needed for the different tasks was different and

even though the locations in the machine where they were

needed were different, it was useful to have a single type of

memory with interchangeable parts to accommodate the
varying needs in different applications of the various func-

tions mentioned above. When it was finally built in 1949,

the EDVAC had a memory of 1024 44-b words in addition to

its external tape unit. The memory was a sequential access

mercury delay-line memory with an average delay of 192 �s

and a throughput of one word every 48 �s from each of

128 delay lines. In comparison, additions were performed

at the rate of one every 864 �s [5].
Such high-speed memories were expensive and finicky

and hence unsuitable for commercial use. Commercial

systems instead adopted a more affordable form of mem-

ory, the drum memory, where the drum was a metal cy-

linder coated with a magnetic recording material. The first

IBM 650 machines [6] could be configured with up to

2000 ten-digit words of drum memory and with an average

access time of 2.4 ms, limited by the 12 500-rpm rotational
speed of the drum. It could perform 200 ten-digit additions

per second. A drum memory with 4608 words was added

to the EDVAC in 1954 to supplement its high-speed delay-

line memory. Drum memories had a short run as main

memory because of their rotational latency, but they were

still in widespread use into the 1960s as secondary memory

or storage.

The 1960s and 1970s saw the prolific use of the mag-
netic core memory which, unlike drum memories, had no

moving parts and provided random access to any word in

memory. Early core memories had a cycle time of roughly

6 �s, nearly 1000 times faster than drum memories [7].

Early core memory systems had only around 4000 words,

but their capacities increased rapidly. The capacity of the

CDC 6600 with a clock cycle of 100 ns in 1965 was around
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128 000 words with an access time of 1 �s [8]. Besides its
superior access time, a big advantage of magnetic core

memory was its reliability.

Core memory was replaced by semiconductor memory

in the 1970s. The memory industry was revolutionized by

the invention of the dynamic random access memory

(DRAM), specially the single-transistor DRAM cell [9].

Semiconductor memories provided several times better

density than core memories, but had disadvantages. Unlike
core memories which were nonvolatile, semiconductor

memories consumed power to retain their state. DRAMs

had even more disadvantages being particularly vulnerable to

soft errors and needing to be refreshed periodically. Despite

these disadvantages, DRAMs became the staple form of main

memory as they rode the technology curve, increasing in

density and decreasing in cost per bit every generation.

Early DRAMs, like the MK4006 launched around 1970,
had a capacity of 1 kb [10] and an access time of 400 ns. By

the end of the decade, the capacity of a single DRAM chip

went up to 64 kb in the MK4164 with an access time of

100 ns. Technology scaling allowed processor clock fre-

quencies to increase much more rapidly during the same

period, and the resulting increased latency in cycles to

memory was ameliorated by the introduction of static RAM

(SRAM) caches closer to the processor. Temporal locality
and spatial locality in programs were exploited using a

cache that had only a fraction of the capacity of the DRAM

main memory. Caches were transparent to the program-

mer, with hardware determining which parts of memory

should be placed at any given time in the cache. As

technology enabled more and more transistors to be placed

on a die, many implementations chose to separate the

instruction cache from the data cache, while the system still
maintained the unified memory model.

Meanwhile disks emerged in the early 1970s replacing

drums as the preferred nonvolatile backup for DRAM main

memory [11]. Compared to the fixed head-per-track of

drums, disks had movable heads, and hence the transition

from drums to disks involved tradeoffs in cost, perfor-

mance, and complexity. However, disk technology kept

improving at impressive rates bringing the price per bit
down the same curve as that of DRAM. The importance of

nonvolatile disks grew with the widespread adoption of

memory virtualization [12], which allowed programs to

address a virtual memory larger than the size of main mem-

ory of the computer. Virtual memory was made transparent

to the user, with the operating system, assisted by hardware,

deciding which part of the virtual memory should be in

main memory and which part in the larger disk storage.
Thus, by the 1970s, the various parts of the memory

hierarchy as seen in systems today were already in place.

III . THE MEMORY HIERARCHY

Surprising as it may seem, the basic principles that guided

the design of the EDVAC are still employed in today’s

machines. These basic principles constitute what is termed
the von Neumann architecture. In this architecture, a set

of instructions is fetched from memory and executed in a

processing unit. Often in the course of executing these

instructions, values need to be fetched from memory using

load instructions and stored back into memory using store

instructions. For longer term access both instructions and

data are stored in file systems on disk.

The most significant change that has been made in
instruction-set architectures since the early days of com-

puting is that today’s reduced instruction-set computers

(RISCs) perform calculations on registers which are initial-

ized with values explicitly loaded from memory, or which

hold results of computations performed by the computa-

tional unit. Results that need to be stored back to memory

are performed using explicit stores. This is in contrast to

the early computers where many of the arithmetic and
logical instructions had operands that addressed contents

in memory. This two-step process was necessitated by the

increased latency to memory compared to the latency of

computation, as described in Section I. Memory latency

increases as memory size increases; the latency of memory

access in a modern server runs into the hundreds of cycles

[13]. The utilization of the computational units can be

greatly increased if operands can be fetched from memory
into registers earlier than when they are needed in the

computationVregisters provide a location close to the

computation for staging the operands. In addition, registers

are useful when there is temporal locality in a program;

reuse of a value from a register is far less costly than bring-

ing the value back from DRAM.

Main memories today are composed of DRAM chips

that are typically packaged in modules called dual inline
memory modules (DIMMs), with several DIMMs making

up the total main memory of the system. The capacity of a

DRAM chip has steadily increased from the 1 kb in the first

DRAM chip mentioned earlier to 8 Gb today, an eight

million fold increase in 40 years. Such a density allows the

total main memory of a system to be as large as 16 TB in a

16-socket system [14]. Commercial database applications

that run on such systems work on data that need to be
persistent and of very large size. The low cost per bit of

disks and their inherent nonvolatile nature makes disks the

natural place to maintain these databases, but the latency of

access to data on disks is limited by their mechanical

characteristics. A large memory in such systems helps

significantly in improving the performance of queries on

these databases, as it provides a staging area for the data

immediately relevant to the computation, analogous to the
role of registers mentioned above.

The part of the memory hierarchy that has undergone

the most change over the years is the layer between the

register file close to the processor and the main memory.

The principal role of this layer is to reduce the effective

latency of a load from memory. As mentioned earlier,

caches are used to anticipate the parts of memory that

Nair : Evolution of Memory Architecture

Vol. 103, No. 8, August 2015 | Proceedings of the IEEE 1333



would be needed by a program. As memory sizes have

increased and as the absolute latency of memory access has

increased over the years, an increasing number of cache

layers has been introduced between the register file and
memory. Today it is not unusual to find at least three levels

of cache in processors. The first level of cache is typically

about 16–64 kB in size with access latencies that are 2�–4�
the cycle time of the processor. This is often backed up by a

second level of cache that may be between 128 kB and 2 MB

in size and with latencies that are 7�–15� the cycle time of

the processor, and may be shared among multiple processors

on the same die. In both POWER7 [13] and POWER8 [14],
the last-level of cache on chip is actually an implementation

of DRAM technology on the processor chip called eDRAM

[15], that provides about 4� the density of SRAM caches and

burns significantly less power. The latency of access to this

layer is in the range of 100 processor cycles, while its capacity

is in the range of 50–100 MB. In order to further close the

gap between this layer and the terabytes of main memory that

may be needed in a system, large POWER8 configurations
also provide the capability for yet another layer of cache, an

eDRAM L4 cache, embedded in the memory controllers

external to the processor with up to 128-MB capacity. Fig. 1

shows the trend in capacities of caches and memory of IBM’s

Power.1

Such deep memory hierarchies are not without their

costs. As mentioned earlier, the programmer knows only

about registers and memory. It is the hardware that hides
the details of caching data in the appropriate layers. Be-

sides the directories that keep track of which parts of

memory are in which layer of cache, there is a significant

amount of logic that goes into the organization of these

caches (e.g., associativity) and in the replacement algo-

rithms to determine which blocks should be replaced to

make room for a new block. In addition, when multiple

users are running simultaneously on the system, it is also
important to keep track of the specific cache blocks and

memory pages that a user is allowed to access. All these

checks add to the complexity of the processor and to the

overhead incurred by software, particularly in the operat-

ing system. The hierarchy is effective when the locality in

an application conforms to the structure of the hierarchy,

but when it does not, it hurts both performance and energy

efficiency.
Finally, when multiple processors share the same

memory, it is important to ensure that accesses to memory

are performed in a manner that is consistent with the

expectation of the programmer. These expectations are

embodied in specifications called the memory coherence

and memory consistency specifications. The more strin-

gent the specification the easier it is for the programmer to

reason about programs, but the more complex the hard-
ware needed to enforce the specification. Unfortunately,

with few exceptions, the programming model for general

purpose machines is largely unchanged from the program-

ming model of the early von Neumann machines, and

interfaces for parallel programs are designed to ease the

burden for programmers attuned to thinking in sequential

steps. The continued pervasive use of these interfaces has

led to features in hardware specifically to optimize the
performance for such interfaces, and thereby led to added

complexity in the hardware.

The memory hierarchy as described above evolved from

the needs of servers and workstations. As technology ad-

vanced, this hierarchy trickled down into low-end systems,

including tablets, smartphones, and embedded systems.

But these latter systems also emphasize power consump-

tion of their memory subsystems considerably more than
latency. They save power by operating at lower voltages,

refreshing less often, and providing deeper power-down

modes. With energy consumption gaining importance on

higher end systems, many of the latter power-saving tech-

niques are likely to find their way to higher end systems

also [16].

IV. RELIABILITY CONSIDERATIONS

DRAMs have always been vulnerable to soft errors, either

due to contaminants in packaging or because of cosmic

rays [17]. As a result, there has always been additional logic

either incorporated into DRAMs or in DRAM memory

systems to make them reliable. In the beginning, this

additional logic was just parity, with, for example, one

additional DRAM chip in a DIMM to store the parity of the
bytes contained in the other eight chips. The parity bit is

written when the memory is written and compared with

the regenerated parity when memory is read. Detection of

errors through parity is not sufficient for large commercial

memory systems; the frequency of errors increases as the

size of memory, and software handling of detected errors

gets cumbersome. The availability of these systems is

Fig. 1. Capacities of cache levels and memory in IBM’s Power series

of machines.

1Trademark, service mark, or registered trademark of International
Business Machines Corporation in the United States, other countries, or
both.
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improved by incorporating some degree of error correction
in addition to error detection. Error correction however

involves logic that is more complex, compared with single-

bit parity schemes, and adds to the cost of memory systems.

Many high-end systems implement a single-error cor-

recting, double-error detecting (SECDED) code by using a

full byte of code for every 64 b of memory. Lower end

systems may not use additional bits for error detection, or

may use simply a parity bit. However, with greater use of
embedded devices in critical applications, reliability expec-

tations for lower end systems have become higher; even

these devices today tend to use error-correcting codes like

SECDED in their memory systems.

The cost of memory systems is also increased by the

redundancy incorporated to improve the manufacturing

yield of DRAM chips. Rather than ensure that all bits in a

DRAM are functioning according to specification, it is less
expensive to provide spare rows, columns, and decoders or

even redundant chips in a system, and configure the ad-

dressing logic to bypass failed structures [18]. The amount

and type of redundancy needed is determined by the types

of failure that need to be tolerated and by statistical data on

the contribution to the yield of these failure types.

Going beyond memory chips themselves, errors in

communicating the contents between a memory module
and the processor may be detected using cyclic redundancy

or checksum codes on the entire content block, typically a

cache line. A general survey of the various reliability fea-

tures incorporated in contemporary DRAMs may be found

in [11].

V. STORAGE-CLASS MEMORIES

The difference in cost per bit of DRAMs and disks and the

difference in latencies of access between the two have led

to a perpetual quest for a type of memory, preferably with

no moving parts, which bridges the gap between the two,

or even eliminates it. The technology currently attempting

to fill that gap is flash memory [19]. The density efficiency

of flash memory is between that of disks and DRAM, and

its access latency, particularly read latency, is much better
than that of disks. Moreover, its cost per bit is dropping

rapidly thanks to its prolific use in mobile devices and even

laptop computers, where its nonvolatile nature allows flash

memory to replace disk file systems [20], and where the

absence of moving parts makes it more rugged and reliable.

Whereas its read time is not too slow compared to that

of DRAM, the write time of flash memory is far slower

than that of DRAM. The process of changing the contents
of a flash cell is more complex than writing a DRAM cell

and consumes a significant amount of energy. The stresses

introduced during writes also tend to limit the number of

times that a flash cell can be written intoVtypically be-

tween 10 000 and 100 000 times. This is not a significant

limitation for lower end uses of flash memory, especially in

mobile devices with their limited platform lifetimes.

Schemes have been proposed [21], [22] to get around the
write endurance problem, and flashes are beginning to be

used in hybrid configurations along with low cost disks to

stage file systems and database storage [23]. In such use,

flashes and other emerging semiconductor nonvolatile

memories are termed storage-class memories (SCMs).

While flash memories are finding a place in the storage

subsystems of modern machines, a higher density option to

replace DRAMs in main memory has not yet emerged.
Flash memories are inadequate in such a role both because

of their limited write capability as well as because of their

high write latency. There have been proposals for using

flash, not directly as main memory, but in a hybrid config-

uration with DRAM used as a staging buffer for data stored

in flash [24], [25]. Other emerging technologies, such as

phase-change memory (PCM) [26] and spin-transfer

torque RAM (STT–RAM) [27] have been mooted as possi-
ble alternatives for hybrid configurations.

VI. NATURE OF DATA

Many of the microarchitectural techniques developed in

the 1980s and 1990s were in response to the needs of

transaction-processing systems which continued to grow

large and handled large volumes of data. Databases, espe-
cially relational databases, formed the important workload

of that period. Databases were important in all industries

and hence had to satisfy stringent requirements from the

point of view of reliability and correctness. These require-

ments were encapsulated in the atomicity, consistency,

isolation, and durability (ACID) properties [28] that most

databases strived to satisfy.

From an architecture point of view, the dominant mul-
tiprocessor architecture that databases favored has been the

shared memory multiprocessing (SMP) [29] architecture.

As database requirements kept increasing, machines with

this architecture were scaled up, i.e., built with ever larger

number of processors sharing a common memory. In order

to satisfy a query or perform analytics, data was fetched

from the database residing on disks and moved through the

various levels of the memory hierarchy to a processor or a
set of processors that performed the needed operations,

such as filtering, sorting, and merging. The results returned

through the same layers in the memory hierarchy back to

disk or to an interactive user. Thus, a significant amount of

data movement is involved, often of data not needed by the

computation, and this movement is alleviated only a little

by making the memory and caches large enough to contain

the immediately useful data.
With the proliferation of new types of transactions such

as those involved in Internet commerce and social net-

working, such scale-up SMP systems became impractical.

Design complexity and cost considerations forced the move

toward more scale-out distributed systems with memory

partitioned across nodes connected in a cluster, and not

shared among them. In such systems, the task of ensuring
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consistency in light of possibly conflicting parallel accesses
to data is left to the programmer or to the system software.

Since the 1990s, distributed systems have been playing

a role in large supercomputers where cost and scalability

are important requirements. Today, distributed clusters

form the dominant type of supercomputer, accounting for

85% of the top 500 supercomputers in the world [30].

Supercomputers are designed for scientific simulation ex-

periments which generally model physical phenomena. In
these applications, the computation itself is cleanly parti-

tionable into local regions that often correspond closely to

partitions of the physical world being simulated. Corre-

spondingly, the interconnection between nodes in the sys-

tem is designed to favor communication from a node to a

fixed set of neighboring nodes, an n-dimensional torus in-

terconnect [31] being an example. The solution technique

commonly employed in these systems is a bulk-synchro-
nous model, where all nodes iteratively alternate between

a parallel computing phase and a parallel communication

phase. The programmer continues to use von Neumann

programming models to program each node and uses spe-

cial interfaces such as message passing interface (MPI)

[32] to program the exchange of information between

nodes during the communication phase. The key goal for

such systems is maximum utilization of the system. To-
ward this end, efforts are made by the programmer and the

system designer to carefully balance the compute load on

all nodes, minimize activity from the operating system

during problem execution, and compute almost exclusively

on the contents in a node’s memory, minimizing disk ac-

cesses. These efforts have been largely successful and the

modest communication overhead between nodes has

enabled a partitioned von Neumann model to serve the
purposes of this community.

The commercial database world has also encountered

the problem of scale, with high-capacity, highly available

transactional machines becoming very expensive. As in the

case of scientific supercomputers, cost considerations are

leading to the partitioning of databases in distributed nodes

on a network. But unlike most supercomputer applications,

redundant copies of data often need to be maintained
across nodes both to improve resilience and to reduce

latency of interactive transactional operations. The chal-

lenge then is to maintain a consistent view of the database

at all times across the entire system without impacting the

availability of the system and hence its usefulness. This was

encapsulated in Brewer’s consistency, availability, and

partition tolerance (CAP) theorem [33] which stated that

when a record is replicated across partitions, it is not
possible to make consistent changes to the record while

making the record immediately available across the system,

if communication between the partitions is not reliable.

An implication of the CAP theorem is that in a distri-

buted system, consistency requirements may need to be

relaxed in order to gain faster responses in a more scalable

manner [34]. Relaxing consistency requirements, while

not an option for many traditional databases, such as
financial databases, is often acceptable for databases asso-

ciated with new types of transactions. In a database that

contains reviews of items on a shopping website, for

example, there is little impact if a shopper does not see the

latest review of a product. By allowing the database to

continue working with stale data while it gets updated with

new values, the latency to responses to queries can be re-

duced, often considerably. Such databases are said to follow
the basically available, soft-state, eventually consistent

(BASE) principles [35], as opposed to the ACID principles

cited earlier. Relaxation of consistency allows the exploi-

tation of less expensive, more scalable systems, and is

especially useful for read-mostly databases, where writes

and updates are not common. In such cases, a node serving

a portion of the database could have its working set in

memory, and thus ensure that a significantly large fraction
of the transactions at that node are satisfied with minimum

latency. Search engines, for example, keep an index of web

keywords in memory and satisfy search queries based on

this index, only occasionally updating the index to include

new documents or changed documents on the web.

The lower cost of scale-out systems, the enormous re-

duction in latency of query processing achieved by keeping

a useful subset of data in memory, and the predominance
of read-type operations in new workload have led to new

implementations of in-memory databases, such as SAP

HANA [36]. In-memory databases are particularly useful

in business analytics, the analysis of transaction data to

drive business planning. Most such analytics work on

snapshots of the state of a large database. When the size of

the system memory is large enough to locate the snapshots

in memory rather than on disk, the speed of analytics can
be improved considerably and can help businesses react

faster to conditions in the marketplace.

This trend toward moving the locus of data from disks

to DRAM, with disks relegated to a backup role, has been

the idea behind proposals such as RAMCloud [37].

RAMCloud postulates that when the DRAM of a distrib-

uted network of servers is the place where all data are

stored rather than a farm of disks, the resulting decrease in
access latency can translate to a 100–1000� gain in the

throughput of database operations. There is undoubtedly a

cost tradeoff. Disks are considerably cheaper in cost per bit

compared to DRAM memory. Fig. 2, adapted from [38],

shows the three-year total cost of ownership (TCO) for a

database in disk, in flash memory, and in main memory.

The figure shows that when query rates are high, in-mem-

ory databases have the best TCO even for moderately large
databases. This is because, at the boundary, say between

flash and DRAM, the cost of flash is limited by the queries

per second needed whereas the cost of DRAM is limited by

the capacity needed. Thus, for a point within the lower

right green region, more flash has to be bought than is

really needed, increasing the TCO compared to that of a

DRAM providing similar bandwidth.
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The use of DRAM main memory to assist in query

processing is especially important in what is commonly

referred to as ‘‘not-only’’ SQL (NoSQL) databases [39].

Examples of NoSQL databases are key-value stores such as

Redis [40], and key-value caches such as Memcached [41].

In the case of Redis, the entire key-value table is kept in

memory and a disk access is performed only to log changes

or to save checkpoint state for reliability. In the case of
Memcached, the value of a key previously accessed from

disk is cached in main memory. As long as there is reuse of

this cached key, and as long as the value of the key remains

unchanged, no accesses are required to the larger database

on disk. It is not uncommon in social media for queries to

be exactly the same for a window of time, or within a

domain. Memcached can be useful in creating a hashed

key from even complex queries and caching the results of
such queries in a key-value table located in the memory of

a local node.

These examples demonstrate that there is a distinct

trend toward using large amounts of memory in systems.

New programming paradigms and new distributed mem-

ory platforms are emerging with a view to providing new

types of service for a world that is both producing and

consuming ever larger bodies of data.

VII. NEAR-DATA PROCESSING

The principle of locality of computation has long been the
basis of design decisions in the computing realm. Algo-

rithms are generally designed with a view to placing needed

data close to where they are used, both in a spatial sense and

in a temporal sense. Hardware implementations are opti-

mized for the case when algorithms exhibit such locality. As

the amount of data used by an algorithm increases, and as

accesses to data follow less regular patterns, it becomes

difficult to satisfy locality requirements both at the algo-

rithm level and at the hardware level. The prediction logic

needed to place data at different levels of a deep memory

hierarchy becomes too complex and too power-hungry, and

is often ineffective. The question then arises whether,

instead of having the data move through all the levels of the

memory hierarchy from disk to processor and back to disk,

it would not be more efficient in time and energy to move
the computation to where the data are located.

Commercial systems have recently started exploiting

this concept. An example is the IBM Netezza Database

Appliance [42]. As illustrated in Fig. 3, this system per-

forms many types of computations close to disk, and hence

transfers processed information rather than raw data from

the disk to the processor. The types of computations

performed on the disk are varied, ranging from simple
filtering operations or data compression operations to

sophisticated query processing. The benefits of performing

such operations closer to the disk are manifold: energy is

saved by not having to move data through the memory

hierarchy, memory bandwidth requirements are reduced,

the latency of query responses is reduced, and the host

processor is freed to perform other tasks.

Rows of tables are distributed across all disks automa-
tically by the system. When the processor receives a com-

plex query, the parts of queries that can be distributed and

done in parallel near the disks are sent to each disk. The

Netezza system includes field-programmable gate arrays

(FPGAs) in the disk controller, as shown in Fig. 4, to allow

the ‘‘computation near data’’ to be customized for each

application. The partial results of such localized processing

are sent back to the main processor to be combined with
other similar results from other disks, to perform

additional operations such as aggregation, join, or sort

operations needed to complete the query processing.

Fig. 2. Solution space for lowest three-year TCO as a function of data set size and query rate (from [34] and [35]).
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Such techniques can be applied also to processing near

solid-state drives (SSDs) like the flash storage mentioned

earlier. The lower latency to SSDs compared to disks
makes it possible to perform even more complex functions

closer to the SSD. Moving computation away from pro-

cessors closer to SSDs can provide savings in bandwidth,
power, and energy, can be more trusted, and incurs much

lower latency [44]. Multipart, atomic write operations

done at the SSD can reduce latency for transactional up-

dates by up to 65% and almost eliminate the bandwidth

overheads incurred by logging schemes typical in transac-

tional databases [45]. Implementing portions of key-value

stores in an SSD has been shown to improve throughput

between 7.5 and 9.6 times [46]. Embedded information
about file system data structures can be processed close to

the SSD, so that the CPU can be freed from performing

simple metadata updates.

The industry is currently at an inflection point where

on the one hand, the nature of technology available to

continue scaling the capabilities of computing systems is

different from that of the past, and, on the other hand, the

nature of problems that need to be solved have character-
istics different from those of the past. Near-data processing

is a paradigm that shows significant promise in helping to

transport us into the new computing landscape [47].

VIII . PROCESSING-IN-MEMORY

While the speed of a basic addition operation and the clock

frequency of processors improved steadily in the 1980s and
1990s, the improvement in performance of the system as a

whole was limited by the speed of communication between

the processor and other components in the system. In

particular, the latency of access to memory and the

bandwidth to memory did not improve commensurately.

This was referred to as the memory wall [48]. One of the

solutions proposed to combat the memory-wall problem in

the 1990s was processing-in-memory (PIM). Early PIM
architectures, such as Terasys [49], Execube [50], DIVA

[51], and VIRAM [52], either proposed the addition of

specialized logic to DRAM chips so that some processing

could be done directly in memory or assumed that all

memory needed by the processor could be placed on the

same chip as the processor. The principal idea was to take

advantage of the bandwidth available by collocating

memory and processing on the same chip rather than be
constrained by the limited bandwidth through the pin

interfaces of separate chips.

Many of these proposals showed promising perfor-

mance and energy efficiency, but they did not make an

impact, for two main reasons. The first was that DRAMs

were built using a DRAM-technology process that was op-

timized for providing high DRAM density at low cost, and

was different from the logic-technology process focused on
providing fast transistors for processor chips. Incorporating

processor logic in DRAM technology resulted in processors

that were considerably slower and less dense compared

with the same design in logic technology. With technology

scaling rapidly improving the number and speed of pro-

cessors, deeper SRAM cache hierarchies mitigated the

bandwidth and latency disadvantages of off-chip DRAMs.Fig. 4. Netezza TwinFin appliance architecture (from [43]).

Fig. 3. Moving computation to data. (a) Traditional processing.

(b) The Netezza paradigm.
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The second reason was that the popular SMP paradigm,
mentioned earlier, allowed large centralized pools of

memory to be accessed uniformly and coherently by any

single processor in the system, and for such pools to be

flexibly allocated among multiple processors; this was not

possible with PIMs where the amount of memory visible to

a processor on a single die was quite limited.

Instead of moving computation all the way to memory,

one could imagine moving the computation to layers in the
system between the processor and memory. One such lo-

cation is the memory controller, traditionally a separate

chip implemented in logic technology that performs func-

tions in support of the DRAM memory chips, such as re-

freshing the DRAM cells, steering the address bits to avoid

faulty cells on the chip, performing error detection and

error correction, and performing self-test. There have also

been proposals to integrate other types of functions in the
memory controller [53]. Simple atomic operations are also

performed at the memory controller in more advanced

designs. High-end processor systems often also add a level

of cache in the memory controller [54].

With the maturing of 3-D stacking technology, process-

ing in or near memory is an area that is about to see

significant progress. Three-dimensional stacking addresses

almost all the deficiencies that have been associated with
PIM in the past. By exploiting a third dimension, stacking

has the potential to provide a compact footprint for a large

amount of DRAM. Three-dimensional stacking also allows

dies of different technologies to be connected with through

silicon vias (TSVs) [55], which can be placed considerably

closer than input/output (I/O) pins in a package. Thus, 3-D

technology promises to provide substantially increased

bandwidth between the DRAM and logic dies located on
the same stack. Micron’s hybrid memory cube (HMC) [56]

is one such memory platform that dramatically increases

the capacity of memory using 3-D stacking of several (4–8)

layers of DRAM dies, and connects this stack to an addi-

tional base logic layer using TSVs (Fig. 5). The base layer

uses complementary metal–oxide–semiconductor

(CMOS) technology optimized for logic, and contains

the memory controller, built-in self-test (BIST) logic, and
interfaces to a host processor or other HMC stacks.

The memory dies in an HMC stack are partitioned into

blocks, and all blocks in the same physical location on all

dies are grouped together into an entity called a vault. A

corresponding vault controller located in the logic layer

individually manages each vault. All vault controllers are

interconnected to one another and, through link control-

lers, to external I/O links via an internal network.
The logic layer in an HMC structure provides a conve-

nient point where data transformations may be performed

on the contents of the memory stack. Such transforma-

tions could filter data before they are provided to a host

processor for further processing, thereby reducing band-

width requirements and latency at the interface between

the host processor and memory. In other cases, such

transformations can remove the need for the host pro-

cessor to read or write any part of the data. In both cases,

the reduction of data movement between chips results

both in improved performance and in power savings.

Several proposals have been made for personalization of

the logic layer in an HMC such as near-data computing

(NDC) [57], throughput-oriented programmable proces-
sing in memory (TOP–PIM) [58], and the active memory

cube (AMC) [59].

The AMC is a proposed personalization of the logic layer

in an HMC targeted for energy-efficient implementation of

future exascale supercomputers. As mentioned before, the

vault controllers, interconnect network, and link controllers

are located on a logic layer separate from the DRAM dies. On

this layer, the AMC adds several processing elements,
referred to as lanes, connected to an enhanced interconnect

network, as shown in Fig. 6. By using the same interconnect

network and the same transaction protocols between a lane

or a link and the vault controllers, a lane can address memory

locations within its AMC just as an external processor can.

The link controller can send and receive read and write

commands using special memory-mapped input/output

(MMIO) addresses to and from any lane. This allows an
external host processor to communicate directly with a lane,

and for a lane to indicate some event to the host without

involving the vault controllers.

By retaining the memory interface of the HMC, an

AMC can appear to a host processor as ordinary memory

accessible through standard memory read and write

commands, while providing added capability of indepen-

dently transforming the contents of memory. Special com-
mands to memory have been provided on systems in the

past, for example, in atomic read–modify–write opera-

tions; the AMC extends the concept significantly further,

allowing commands to specify arbitrary programs to per-

form the transformations. As described in [59], complete

kernel programs performing a mix of instructions, includ-

ing scalar and vector operations on the contents of an AMC,

and branches, can be loaded into the instruction buffers of
each lane of the AMC and executed on demand by the host

through memory-mapped commands.

Fig. 5. Structure of Micron’s hybrid memory cube (from [56]).
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Die-stacking technologies are maturing to enable the

integration of compute and data in a way that was not

possible in previous merged logic-with-DRAM solutions.

Besides the increased bandwidth between compute and

memory, such integration offers the potential for signif-

icant savings in the energy of data movement. With the

renewed focus on energy efficiency there is reason to

believe that PIM could finally find widespread adoption.

IX. APPROXIMATE MEMORIES

It may no longer be possible for hardware that guarantees

the high reliability traditionally enjoyed by the computing

community to be built in future with reasonable cost. The

massive number of components in future systems and the

low voltages that will be needed to operate them efficiently

collude to lower the inherent mean-time between failures
(MTBFs) of future large systems. The operating system,

runtime system, or even the application itself will need to

step in to fill the impending reliability gap. Checkpointing

schemes have been used in large supercomputers to allow

an application to roll back to some known state when a

fault is detected. Such schemes will become more common

in other systems. Such schemes are also most effective

when the application programmer provides hints about the
tolerance to failures in various data structures of the pro-

gram or in various phases of the program. An interesting

example of this is the work described in [60], where com-

piler technology is used to transform an application to

make it self-checkpointing and self-restartable.

Checkpointing is effective when there is a way to detect

that a fault has occurred. However, it is very hard to anti-

cipate all the ways in which faults can occur, and hence

very hard to design detection capability for all types of

faults. Once a failure that is not anticipated by the assumed

fault model occurs, there is a chance that the computation

will complete with corrupted results. While not all applica-

tions can tolerate corrupted results, it is worthwhile asking

whether there are applications, or regions of applications,

that can tolerate some degree of corruption in their results.
There is reason to be optimistic. During the early

2000s, there was a tremendous growth in data produced by

humans, computers, and sensors. Along with this, there

was a tremendous commercial interest in processing these

data to glean actionable information. These data were dif-

ferent from those traditionally associated with transaction-

al databases. Moore’s law [3] and the resulting low cost of

digital hardware led to the transition of all forms of media
data, image, video, audio, sensory data, into a digital form

rather than their erstwhile analog form [61]. In the early

days, the new data represented digitally converted versions

of existing analog data, but, as depicted in Fig. 7, the

converted data are dwarfed today by the massive amount of

new data being produced directly in digital form. The

characteristics of this type of data and the type of analysis

performed on such data are vastly different from those for
transactional data. Transactional data, also called structured

data, tend to be organized and searchable through simple

search engines. On the other hand, unstructured data like

email, audio files, presentations, videos, images, and instant

messages are more difficult to perform an analysis on.

In the meantime, the types of problems that are being

solved by computers is changing rapidly. The nature of

computation needed on new data does not always require

Fig. 6. A 14-nm proposal for the AMC (from [59]).
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the preciseness that is implemented on today’s computers.

With the data having unknown provenance and unknown

precision, and with errors possibly introduced into the data
during transmission, it is more reasonable to relax the pre-

ciseness of the computation on such data, if it could provide

faster answers or consume less energy. This is the idea be-

hind approximate computing, a burgeoning research topic.

Approximate computing has implications on the mem-

ory system also. In one proposal, Sampson et al. [63]

consider multilevel memories, such as multilevel phase-

change memories [64], where the density is enhanced by
storing more than one bit in a single memory cell. Multiple

writes may be needed to ensure that the correct value is

stored in the cell and hence a write latency cost and an

energy cost is incurred in a multilevel write. Performance

can be improved by not incurring the latency of multiple

writes, but at a cost in the degradation of the final quality

of the results. The user is allowed to specify that certain

data structures in the program can be placed in not-so-
reliable memory. The system partitions main memory into

two regions, one with high reliability and another with

high capacity but lower reliability, and allows the user to

place each data structure in the appropriate target location.

On a selected suite of programs, Sampson et al. were able to

demonstrate an average performance gain of 1.7� with the

results degrading in quality by less than 10%.

X. NON-VON NEUMANN ARCHITECTURES

The physical separation of memory and compute as seen in

today’s computers is a legacy of early machines and is a

principal characteristic of the so-called von Neumann ar-

chitecture. Over the years, this physical separation was also

accompanied by a large difference between the latency of
simple arithmetic computations and the latency of access to

memory. Several changes have been made under the covers

in the microarchitecture and hardware implementation to

close this latency gap without changing the basic execution

model. Mainstream systems have not strayed significantly

from the original von Neumann architecture even though

there have been several examples of specialized non-von

Neumann systems for specific applications that demonstrate
better performance, power efficiency, or area efficiency.

The changed nature of data and the changed nature of

computation over the data provides an opportunity to bring

new computational paradigms into the mainstream. There

is a proliferation of proposals for application-specific ac-

celerators attached to a general purpose host. These pro-

posals typically consist of closed hardware solutions for a

single application or a domain of applications, aiming to
eliminate computational inefficiencies inherent in stan-

dard general purpose processors. Such accelerators can

hide the detailed computing paradigm implemented within

them by presenting just a software library interface to a

program running on the host. Most of them, like GPUs [65]

and Cell [66], tend to be simply application domain-specific

von-Neumann architectures, still maintaining the separation

of memory and compute.
The idea of closely coupling computation with memory is

inherent in architectures like systolic arrays and cellular

automata. These architectures have had a long history, but are

getting renewed attention [67], because of their suitability to

Fig. 7. Historical trend of growth of information storage capacity (from [62]).
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problems involving today’s new data and because of the
emergence of new technologies to implement them.

Content-addressable memories (CAMs) and ternary

content-addressable memories (TCAMs) present simple

examples of an architecture that implements a close com-

bination of memory and computation. In a CAM, compa-

rison logic is included with each memory cell that makes it

possible to select a chunk of memory, not by its location as

in standard memory, but by its contents. However, the
additional logic decreases the density of memory consid-

erably compared to standard DRAM and adds to its power

consumption. TCAMs [68] differ from CAMs in that, in-

stead of a 0 or 1 specification for each bit required to be

matched, TCAMs allow three states for each digit, 0, 1, and

x, where x indicates that a match occurs irrespective of

whether that digit is 0 or 1 (‘‘don’t care’’ bit). A common use

for CAMs and TCAMs is in routing networks, where the
address field of a network packet is used to rapidly deter-

mine how a packet should be routed to its destination.

The concept of content addressability and the idea of

combining memory with computation was taken one step

further in the connection machine of thinking machines

[69] which incorporated a single-bit processing element

with each 4 kB of memory. The machine consisted of

65 536 such elements interconnected in a hypercube con-
figuration. This machine was able to exploit the data pa-

rallelism inherent in many scientific applications. In

molecular dynamics, for example, one processing element

is assigned to an individual atom, and force values from

neighboring atoms are used to compute the net force on

the atom in a cell and thereby its instantaneous trajectory.

All calculations in all processors are performed in parallel,

thus ensuring a significant speedup of the force calculation
phase. The connection machine was an implementation of

a concept developed by Danny Hillis in his Ph.D. disser-

tation [70] motivated by his desire for a computer that

worked like the human brain. There is limited under-

standing of how the brain works, but the common belief is

that, unlike von Neumann machines, computation and

memory are much more closely integrated in the brain.

Several proposals have been made for computer struc-
tures that have functional elements similar to the func-

tional elements of the brain. The most popular of these is

the artificial neural network model [71]. The artificial

neural network consists of layers of computational ele-

ments called neurons programmed to perform tasks such

as image recognition. Neurons of one layer are connected

to neurons of adjacent layers through an interconnection

network. Each neuron gets a set of binary inputs from a
previous layer and consists of a computational element

implementing a nonlinear function whose result is trans-

mitted to neurons in the next layer. To make the neural

network general, a set of weights is associated with the

function computed in the computational element. These

weights form the ‘‘memory’’ spread across the computa-

tional elements in the network. The memory in an artifi-

cial neural network is local to a neuron, not shared
between neurons. The amount of memory associated with

each computational element increases with the sophisti-

cation of the task performed.

The parameters for the firing of neurons and their con-

nectivity to other neurons is learned by exposing the model

to a set of inputs with known outputs. This is very different

from the rule-based programming of conventional general

purpose computers which are programmed using the prog-
rammer’s knowledge of how the task should be completed.

A neural network is not capable of performing all the

functions that a general purpose computer can. Unlike

general-purpose computers, they are data driven; they

produce actionable results based on previous learning in

reaction to presented data.

The artificial neural network is a central element in the

architecture used by Esmailzadeh et al. [72] to demonstrate
the significant advantages in cost, power, and latency

through approximate computing. The programming model

proposed in the paper allows a region of a program to be

deemed approximable by the programmer. The compiler

produces a version of the approximable code targeted for a

separate accelerator that performs the computation faster

and with lower energy, but with results that may be dif-

ferent from the results produced by the host. On a variety of
programs that tolerate approximation the authors show

impressive performance gains and power reduction for a

tolerable loss of quality by using an artificial neural network

specially trained to the approximable code region, instead

of running the region on a general purpose host processor.

There continue to be new models inspired by the brain,

particularly for analyzing large bodies of streaming data.

One such model is the hierarchical temporal memory [73]
model, which is inspired by the neocortex region of the

human brain in its functionality, and also to some extent in

its structure. The HTM model is the engine behind

Numenta’s system for analyzing large bodies of data to

detect anomalies [74].

Attention is also shifting toward the construction of

machines, or machine elements, that have brain-like func-

tionality. The SyNAPSE program [75] has developed a chip
[76] that incorporates one million programmable neurons,

256 million programmable synapses, and 46 billion synap-

tic operations per second per watt. The 5.4 billion transis-

tor CMOS chip implements an on-chip 2-D mesh network

of 4096 digital, distributed neurosynaptic cores, each core

integrating memory, computation, and communication,

and operating in an event-driven, parallel, and fault-

tolerant fashion. The combination of such a data-driven
architecture with a hybrid asynchronous–synchronous

design methodology and a 28-nm technology that provides

low-leakage transistors together contribute to the chip’s

very low power density of 20 mW/cm2 and very low average

power consumption of 70 mW.

There is still a lot of work that needs to be done in

making non-von Neumann systems as easy to program and
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use as the current generation of general purpose machines.
The early uses of such machines will likely be in special

purpose applications and as appliances attached to more

familiar computers. But there are signs that the demands

of the data-driven world combined with the looming end of

Moore’s law will accelerate the quest for such new tech-

nologies and new architectures.

XI. CONCLUDING REMARKS

Memories have played an important role in computers

since the early days of computing. Throughout, the princi-

pal use of memories has been to help complete a calcula-

tion, whether by storing the input needed for simulation or

for transaction processing, holding the intermediate re-

sults produced during the course of the calculation, or

saving the results of a calculation before they are archived
or presented to a consumer.

Advances in lithography and circuit design have al-

lowed memory densities to increase in an affordable man-

ner. Supplemented with ingenuity in processor design, this

increasing density has allowed larger and more complex

problems to be solved efficiently without giving up on the

von Neumann stored-program concept and the separation

of computation and memory.
This free ride is ending. It is getting increasingly diffi-

cult to build and operate nanometer-scale device structures

in a reliable manner, threatening the end of CMOS scaling.

The workhorse of memory, the DRAM, is already

demonstrating this difficulty with scaling. Newer devices

like flash, PCM, and STT–RAM hold promise, but currently

do not have all the attributes needed to replace DRAMs.

Thus, the quest will continue for a technology that provides
a memory that is nonvolatile, has density better than that of

DRAM, and has access times no worse than that of DRAM.

Meanwhile, over the years, computing has become ubi-

quitous. The needs of computing can no longer be gauged by

the requirements of a single computer or even a single

system. Rather, computing today involves processing of data

in a large connected world. The very nature of problems

solved by computers has changed. Paradigms for using and
programming computers have also changed to keep up with

these new requirements, and so also has the role of memory.

This change is most visible at the application level,

where traditional disk-based relational databases are giving

way to new forms of in-memory databases, in-memory ta-

bles, and in-memory computing. The role of memory is
changing from being a place to store information for a

transient calculation to a place where rapidly retrievable

information is stored over long periods of time. Today, this

change is visible only at the highest levels of the system

stack, but as these paradigms take hold, the change is likely

to trickle down through the other layers and even into the

processor and memory hardware.

Another change that is occurring is the realization that
there are inefficiencies in moving data across the memory

hierarchy, and across nodes in large distributed systems.

This is engendering techniques to move computation to the

data wherever it is located, whenever it is efficient to do so.

This will also affect the design of memoriesVmemories will

no longer be passive repositories; they will be called upon to

serve data in either raw or processed forms not only from

compute elements local to their node, but from compute
elements located anywhere on a large distributed system.

Finally, a change is occurring in the nature of tasks

expected from computers. Unlike the simulation tasks that

dominated the early computers and the transactional pro-

cessing tasks that dominated the more recent servers, a

significant amount of computation in the future will in-

volve tasks that process multiple kinds of data, sometimes

of unknown quality, to provide actionable information not
only to individuals, but to institutions, corporations, and

even governments. Many of these tasks will have low la-

tency and cost requirements that can be met only by com-

promising somewhat on the precision and accuracy

expected from traditional simulation and transaction pro-

cessing tasks. New paradigms in approximate computing

will emerge, and with it, new organizations for memories

that bring computation and memory closer together at finer
granularities.

The industry is at the threshold of a new post-von

Neumann era. New technologies and new paradigms will

emerge to solve new types of problems as well as to solve

large-scale versions of old problems in a cost- and energy-

efficient manner. Memory is clearly going to play an even

more important role in this new era than it has in the past. h
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