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Evaluatmg Assoc1at1v1ty in CPU Caches

MARK D HILL, MEMBER, IEEE, AND ALAN JAY SMITH FELLOW, IEEE’

Abstract—Because ' of the infeasibility or expense : of large
fully-associative caches, cache memories are usually designed

to be set-associative or direct-mapped. This paper presents 1)
new and efficient algorithms for simulating alternative direct-
mapped and set associative caches, and 2) uses those algorithms
to quantify the effect of limited assocnatnvnty on the cache miss
ratio.

We mtroduce a new algonthm forest szmulatton, for 51mulat-
ing alternative direct-mapped caches and generalize one, which
we call all-associativity simulation, for simulating alternative
direct-mapped, set-associative, and fully-associative caches. We
find that while all-associativity simulation is theoretically less ef-
ficient than forest simulation or stack simulation (a commonly
used simulation algorithm); in practice, it is not much slower

" and allows the simulation of many more caches with a single
_pass through an address trace.

We also provide data and insight into how varying associativity
affects the miss ratio. We show: 1) how to use simulations of

alternative caches to isolate the cause of misses; 2) that the.

principal reason why set-associative miss ratios are larger than
fully-associative ones is (as one might expect) that too many
active blocks map to a fraction of the sets even when blocks
map to sets in a uniform random manner; and 3) that reducing

" associativity from eight-way to four-way, from four-way to two-

way, and from two-way to direct-mapped causes relative miss

ratio increases in our data of respectively about 5, 10, and 30
percent, consistently over a w1de range of cache sizes and a

range of line sizes.

Index Terms— Associativity, buffer, cache memory, com-

puter architecture, direct-mapped, memory systems, perfor- .

mance evalulation, set-assocnallve and trace-driven simulation

.algorithms.

1. INTRODUCTION

HREE important CPU cache parameters are cache size,
block (line) size, and associativity [27]. Cache size (buffer

size, capacity) is so important that it is a part of almost all
cache studies (for a partial bibliography see [29]). Block size
(line size) has recently been examined in detail in [30]. Here

‘'we concentrate on associativity (degree of associativity, set

" Manuscript received February 14, 1989; revised July 10, 1989. The work
presented here is based on research supported in part by the National Sci-
ence Foundation under Grants CCR-8202591 and MIP-8713274, by the State
of California under the MICRO program, by the Defense Advanced Re-
search Projetts Agency monitored by Naval Electronics Systems Command
under Contract N00039-85-C-0269, the graduate school at the University of

“Wisconsin-Madison, and by IBM Corporation, Digital Equipment Corpora-

tion, Philips Research Laboratories/Signetics Corporation, Apple Computer
Corporanon and the Hewlett Packard Corporation. -
. D. Hill is with the Department of Computer Sciences, Umversxty of
Wlsconsm Madison, WI, 53706.
AL Smnh is with the Computer Science Division, Department of Elec-

-trical Engineering and Computer Science, University of Cahfomla, Berkely,

CA 94720.
IEEE Log Number 8931174.

“ size) wh1ch is the number of places ina cache where a block

can reside.

Selectmg optimal associativity is 1mportant because chang-
ing associativity has a significant impact on cache performance
and cost. Increasing associativity improves the likelihood that
a block is resident by decreasing the probability that too many
recently-referenced blocks map to the same place and by al-
lowing more blocks to be considefed for replacement. The
effect of associativity on cache miss ratio has never been iso-
lated and quantified, and-that is one of the major goals of

.this paper. Conversely, increasing associativity often increases

cache cost and access time, since more blocks (frames) must
be searched in parallel to find a reference [16].

Fig. 1 illustrates set-associativity. A set-associative cache’

uses a sef-mapping function f to partition all blocks (data
in an aligned, fixed-sized region of memory) into a number
of equivalence classes. Some number of block frames in the
cache are assigned to hold recently-referenced-blocks from
each equivalence class. Each group of block frames is called
a set. The number of such groups, equal to the number of

. equivalence classes, is called the number of sets (s). The -

number of block frames in each set is called the associativity

'(degree of associativity, set size, 7). The number of block

frames in the cache (c) always equals the associativity times

the number of sets (¢ = n -s). A cache is fully-associative

if it contains only one set (n = ¢, s = 1), is direct-mapped
if each set contains one block-frame (n = 1, s = ¢), and is
n-way set-associative otherwise’ (where n is the ass001at1v1ty,
s =c/n).

On a reference to block x, , the set-mappmg functlon S feeds
the “‘set decoder’’ with f(x) to select one set (one row), and
then each block frame in the set is searched until x is found (a
cache hit) or the set is exhausted (a cache miss). On a cache

miss, one block in set f(x) is replaced with the block x ob-
- tained from memory. Finally, the word requested from block

X is returned to the processor. Here for conceptual simplic-
ity we show the word within the block selected last (in the
box “compare block number with tags and select data word”).
Many implementations, however, select the word within the
block while selecting the set to reduce the number of bits that

-must be read; i.e., only words are gated into the multiplexer,

not full lies. The most commonly used set-mapping function
is the block number modulo the number of sets, where the
number of sets is a power of two. This set mapping function

"is called bit selection since the set number is just the num-

ber given by the low-order bits of the block address. For 256
sets, for example, f(x) = x mod 256 or f(x) = x anp Oxff,
where mod is remainder and AND is bitwise AND.

The method we use for examining associativity in CPU
caches is trace-drzven simulation. It uses one or more (ad
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dress) traces and a (cache) simulator. A trace is the log of a
dynamic series of memory references, recorded during the ex-
ecution of a program or workload. The information recorded
for each reference must include the address of the reference
and may include the reference’s type (instruction fetch, data

read, or data write), length, and other information. A sim- *

ulator is a program that accepts a trace and parameters  that
describe one or more caches, mimics the behavior. of those
caches in response to the trace, and computes performance
metrics (e.g., miss ratio) for each cache.

We analyze assoc1at1v1ty in caches with trace-driven sxmula- )

tion for the same reasons as are discussed in [28]: The princi-
pal advantage of trace-driven simulation over random number
driven simulation or analytical modeling is that there exists no
generally-accepted model for program behavior (at the cache
level) with  demonstrated validity and predictive power. The
major. disadvantage is that workload samples must be rela-
tively short, due to disk space and simulation time limits.

The CPU time required to simulate many alternative caches
with’ many traces can be enormous. Mattson et al. [19] ad-
dressed a similar problem for virtual memory simulation by
developing a technique we call stack simulation, which allows
miss ratios for all memory sizes- to be computed simultane-
ously, during one pass through the address trace, subject to

several constraints including.a fixed page size. While. stack

simulation can be applied to ¢aches, each cache configuration
with a different number of sets requires a separate simulation.
For this reason, this paper first examines better algorithms
for simulating alternative direct-mapped and set-associative
caches, and then uses those algorithms to study assocmtmty

. in caches.

The rest of this paper is orgamzed as follows Sectlon II
reviews previous work on cache simulation algorithms and
associativity in caches. In Section III, we explain our meth-
ods in more detail and describe our traces. Section IV dis-
cusses cache simulation algorithms, 1nclud1ng properties that
facilitate rapid simulation, a new algorithm for simulating al-

. ternative direct-mapped caches, and ‘an extension to an al-

gorithm for simulating alternative caches with arbitrary set-

* mapping functions. Section V examines the effect of associa-

tivity on miss ratio, including categorizing the cause of misses
in set-associative caches, relating- set-associative ‘miss ratios
to fully-associative ones, comparing miss ratios from similar

Damll

Set-associative mapping. .~ - "

set-associative caches, and extending the design target miss

+ ratios from [28] and [30] to caches with reduced associativity.

Readers interested in the effect of associativity on miss ratio
but not in cache simulation algorithms may skxp Section IV
as Sectlon V is written to stand alone ‘

‘11 RELATED WORK
A Slmulatlon Algortthms

The or1gma1 paper on memory hierarchy s1mulat10n is by
Mattson et al. [19]. They. introduce inclusion, show when
inclusion holds, and develop stack simulation, which uses
inclusion to rapidly simulate alternative caches. Inclusion is
the property that after any series of references, larger alterna-
tive caches always contain a superset of the blocks in smaller
alternative caches.! Mattson et al. show inclusion holds be-
tween alternative caches that have the same block size, do no
prefetching, use the same set-mapping function (and therefore

have the same number of sets), and use replacement algorithms .

that before each reference induce a total priority ordering on
all previously referenced blocks (that map to each set) and use

only this priority ordering to make the next replacement deci- -

sion; Replacement algorithms which meet the above condition,

called stack algorithms, include LRU, OPTIMUM, and (if

properly defined) RANDOM [6]. FIFO does not qualify since
cache capacity affects a block’s replacement priority. In Sec-

tion IV-A, we will prove when inclusion holds for caches that’

use arbitrary set-mapping functions and LRU replacement.
Mattson et al. develop stack simulation to simulate alter-
native-caches that have the same block size, do no prefetching,

- use the same set-mapping function, and use a stack replace-
ment algorithm. Since inclusion holds, a single list per set,.

called a stack, can be used to represent caches of all associa-

- tives, with the first n elements of each stack representing the

blocks in an n-way set-associative cache. For each reference,
stack simulation performs three operations: 1) locate the ref-
erence in the stack, 2) update one or more metrics to indicate
which caches contained the reference, and 3) update the stack
to reﬂect the contents of the caches after the reference. We

! Inclusion is different from multilevel inclusion deﬁned by Baer and

"Wang [5]. While inclusion is a property relating alternative caches, multilevel

inclusion relates caches in the same cache hierarchy.
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call these three operations FIND, METRIC, and UPDATE,

and will show that the algorrthms discussed in later in Sectlons
IV-B and IV-C use the same steps.

The most straightforward implementation of stack s1mu1a-
tion is to implement each stack with a linked list and record
hits to position » by incrementing a counter dlstance[n] After
N references have been processed, the miss ratio of an n-way
set-associative cache is simply 1 — 7" | distance[i]/N. Since
performance with a linked list will be poor if many elements of
a stack must for searched on each reference, other researchers
have developed more complex implementations of stack simu-
lation, using hash tables, m-ary trees, and AVL trees [8], [21],

[33]. While these algorithms are useful for some memory hi--

erarchy simulations, Thompson [33] concludes that linked list
stack simulation is near optimal for most CPU cache simu-
lations. Linked list stack:simulation is fast when few links

are traversed to find a reference. On average, this is the case -

in CPU cache simulations since 1) CPU references -exhibit a
high degree: of locality, and 2) CPU.caches usually have a
large number of sets and limited associativity, dividing active
“blocks among many stacks and bounding maximum stack size;
different results are found for file system and database traces.
For this reason, we consider only linked list stack simulation
further, and use stack szmulatzon to refer to llnked list stack
simulation. : Coe

Mattson et al. also briefly mention a way of- srmulatmg )
- caches with different numbers of sets (and therefore different -

set-mapping functions). In two technical reports, Traiger and
Slutz extend the algorithms to simulate altérnative caches with

different numbers of sets and block sizes [34], and with dif-

- ferent numbers of sets, block sizes, and subblock sizes (sector
and block sizes, address and transfer block sizes) [24]. They
require that all alternative caches use LRU replacement, bit-
selection for set mapping, and have block and subblock sizes
that are powers of two. (Bit selectlon uses some of the bits

of the block address as a binary number to specify the set.)

In Section IV-C, we generalize to arbitrary set-mapping func-
- tions their algorithm for smulatmg alternatrve caches that use
. bit selection. - ~ : .

- The speed of stack simulation can also be improved by delet-
ing references (trace entries) that will hit and not affect re-

placement decisions in the caches to be simulated [25]. Puzak
[23] shows that if all caches simulated use bit selection and

~ LRU replacement, references that hit the most recently used
element of a set can be deleted ‘without affecting the total
number of misses. We will show that this result trivially fol-
lows from properties we define in Section IV-A, allowmg
such references to be deleted from traces before using ‘any
of our simulation algorithms. (The total number of memory

references in the original trace must be retamed in order to.

- compute the miss ratro )

B Assoczatzvzty

lowing three categories: 1) papers that discuss associativity
- as part of a more general analysis of 32 kbyte and smaller

. caches, among the more notable of which are [18], [171, [7], -

A
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[32], [27], and [11]; and [13] 2) papers that discuss asso-

ciativity and-other aspects of cache design for larger caches

" ([4], [2], and [22]); and 3) those that discuss only associativity

([26] and [16]). Since caches have been getting larger, papers

‘m category 1) can also be characterrzed as older, while those
“in category 2) are more recent.

Papers in category 1) provide varying quantrtres of data
regarding the effect of changing associativity in small caches.

‘The qualitative trend they support is that changing associativ-

1ty from direct-mapped to two—way set-associative improves
miss - ratio,doubling associativity to four-way produces a
smaller improvement, doubling again to.eight-way yields an
even smaller improvement, and subsequent doublings yield no
significant improvement. Our quantitative results are consis-
tent with results in these papers. We extend their results by

examining relative miss ratio changes to isolate the effect of
associativity from other cache aspects and by examrmng some

larger caches. = .7 '

© Alexander ef al. use trace-drlven srmulatron to study small’

and large caches [4]. Unfortunately, the miss ratios they give
are much lower than those that have been measured with hard-
ware monitors and real workloads see [28] for reports of real
measurements. .. >

. Agarwal et al. use traces gathered by modlfylng the mi-
crocode -of the VAX 8200 to 'study large caches and to try
to separate operating system and .multiprogramming effects
[2]. They briefly examine associativity, where they find that

associativity in large caches impacts multiprogramming work-

loads more strongly. than uniprocessor workloads. They find
for one workload that decreasing associativity -from two-way
to direct-mapped increases the multiprogramming miss ratio
by 100 percent and the uniprogramming miss ratio by 43 per-

. cent.- These numbers are much larger than the average miss'
,ratro change we find (30 percent)

“Przybylski et al. [22] examine cache 1mplementatron trade-

offs. They find- that - reducmg associativity from two- -way to

direct-mapped increases miss ratio 25 percent, regardiess of

cache size, which is consistent with our results.. One contribu-

tion of that paper is a method of:translating the architectural

_impact of a proposed design change into time by computing

the cache hit time increase that will exactly offset the bene-
fit of the proposed change. A change improves performance
only if the additional delay required to implement the change

is less than the above increase. Przybylski ef al. find that the

architectural impact times for increasing associativity are of-
ten small, especially for large caches, calling into questron the
benefit of wide associativity. R A

The first | paper to concentrate exclusrvely on assocratrvrty is
[26]. That paper presents a'model that allows miss ratios for

set associative caches to be accurately derived from the fully
associative miss ratio. ‘In Section V-B, we -further validate -

those results by showing that the model accurately relates the

" miss ratios of many caches, including large dlrect-mapped \
' ~caches, to LRU distance probabilities. -~ . -
Prevrous work on assocratrvrty can be broken into the fol-'

- The second paper to concentrate on. assocratrvrty is [16]

based on parts of [15]. It shows that many large single-level -

~ 2 This survey includes results for sone large caches w1th wrde assocratlvrty
(e.g., 32-way set-associative 64 kbyte caches). :
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: caches in- uniprocessors. should be direct-mapped, since the h
- drawbacks of direct-mapped caches (e.g., worse miss ratios

and more-common worst case behavior) have small signifi-
cance for large caches with small miss ratios, while the bene-
fits of direct-mapped caches (lower cost and faster access time)
do not diminish with increasing cache size. Here we examine
miss ratio in more detail, but do not discuss 1mplementat10n
consrderatlons -

III. METHODS AND TRACES -

In this section, we discuss the use of the miss ratio as'a
suitable metric (among others), describe the traces that we
use, show how we estimate average steady-state miss ratios,
and show- that our traces yield results consistent with those
observed from running systems

To first order, the effective access time of a cache can be
modeled as fcache -+ MiSS_ratio - £memory- (Additional factors

‘which affect access time including the overhead of write backs,

extra time for line crossers, page crossers, and TLB misses,

and the fact that writes may be slower than reads. These latter - -

delays are much less significant than those given in the expres-

sion.) The miss ratio is the number of cache misses divided -
by the number of memory references, tmemory is the time for

a cache rmss and fcache is the time to access the cache on a
hit. The two latter parameters are implementation dependent,
and in [15] there is a discussion of their effect on cache per-
formance. As noted earlier, increases in associativity, while
generally improving the miss ratio, can increase access time,
and thus-degrade overall performance. Here, we concentrate
on miss ratio because it is easy to define, interpret, compute,

. and is 1mplementat10n 1ndependent This independence facili-

tates cache performance comparisons between caches not yet

) 1mplemented and .those implemented with different technolo—

gies and in different kinds of systems. -
Results in this paper are based on two partially overlapping
groups of traces, called the five-trace and 23-trace groups,
respectively. Table I presents data on the traces. The first
column gives the name of each trace sample. The second gives
the fraction of all references that are instruction references.
In these simulations, we do not dlstmgulsh between data reads

and writes. The third column gives the length of the address

traces’ in-1000’s of references. The final column gives the
number of distinct bytes referenced by the trace, where any
reference in an aligned 32- byte block is consrdered to have

; ~ touched each byte in the block.

Each of the trace samples in the five-trace group comes
from the second 500000 references of a longer trace. The

first three samples are user and system VAX-11 traces gath-

ered with ATUM [1]. Trace mul2_2nd500k contains a circuit
srmulator and a microcode address allocator running concur-

rently under VMS. Trace mul8._. 2nd500k is an eight-job mul-

tiprogrammed workload under VMS: spice, alloc, a Fortran
compile, a Pascal compile, an assembler, a string search in

‘a file,’ jacobi (a numerical benchmark) and an octal dump.

Traee"/—ue>2nd500k consists of several copies of a program
that simulates interactive users running under Ultrix. The

other two samples in the trace group, mvsl_2nd500k and

mVsZ_an500k, are co_lleetions of IBM 370 referenees from

1615

TABLE 1
.. DATA on TRACES
- Five-Trace Group
Trace Sample Instruction Length (1000°s Dynamic Size
Name References (%) of references) . (K-bytes)
mul2_2nd500K 53 - 500 218
mul8_2ndS00K . ||* . ¢ 51 : . 500 292
ue_2nd500K 55 500 L2
. mvsl_2nd500K o2 : 500 T 163
mvs2_2nd500K 55 . 500 © 201
23-Trace Group -
Trace Instruction Length (1000°s Dynamic Size
Name References (%) of references) (K-bytes)
decO 50. . 362 120
50 353 . 125
fora - 52 . 388 . 144
forf 2 52 . . 401 : 128
: - 53 - 387 . 152°
53~ . 414 105
" ' 52 . 368 .- . 205
fsxzz 51 . 239 . 104
ivex 60 - ) - 342 210
. macr 55 343 . 199
© - memxx 49 445 139
mul2 52 386 : c 204
: 53 383 169
56 367 165
mul8 51 408 218
. . 54 390 : 196
. . . 46 29 . 194
nll . - ] .58 ) 1700 - 55
savec 50 432 . 94 .
61 .. . 228 . 54 .
ue ‘56 358 205
. 57 o n 191
. 55 Co34 221

system calls invoked in two Amdahl standard MYVS workloads
[28]. ’

The second trace group contains 23 samples of various
workloads gathered on a VAX-11 with ATUM [1]. Trace sam-
ples that exhibit unstable behavior (e.g., a particular doubling

of cache size or associativity alters the miss ratio observed by

many factors of two) have been excluded from both groups.
~~We estimate the steady-state miss ratios for a trace sample

using the miss ratio for a trace after the cache is warm (the -

warm-start miss ratio). A cache is warm-if its future miss
ratio is not significantly affected by the cache recently being

empty [2]. We compute warm-start miss ratios using the sec- -

ond 250K references of each 500K-reference trace sample.
We found that most caches with our traces are warm by 250K
references by locating the knee in the graph of the cumulative
misses to empty block frames versus references, a method
of determining when caches are warm proposed in Agarwal
et al. [2]. Furthermore, results for these multiprogrammed
traces properly include cold-start effects whenever a process
resumes execution. -

-Fig. 2(a) and (b) drsplays miss ratio data for unified caches -
.(mlxed i.e., cache data and instructions together) with 32-

byte blocks. Solid lines show the average warm-start miss ra-

tios with different associativities (1, 2, 4, and 8). The average

warm-start miss ratio is the arithmetic average of warm-start
miss ratios for each of the five traces in the five-trace group.
The arithmetic mean is used because it represents the miss
ratio of a workload consisting of an equal number of refer-
ences from each of the traces. Previous experiments (as were
done for [31] and [15]) showed that little difference was:ob-

-served when other averaging methods were used. The dashed
‘line (labeled ““inf’’) gives the warm-start miss ratio of an infi-

;
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Fig. 2. Miss ratios for five-trace workload with caches of associativities of
1, 2, 4, and 8. The dashed line shows the miss ratio for an infinite cache.
(a) Smaller caches. (b) Larger caches. - i ;

nite cache, a cache so large that it never replacés' any blocks.
Measurements for the 23-trace group are similar. ;
Fig. 3 compares miss ratios for the five-trace group in eight-

way set-associative unified caches, having 16-byte and 32-byte
blocks, to miss ratios from other sources. Line “cold”” mea-
sures miss ratios from an empty cache, while line “warm’"

=
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Fig. 3. Comparison of our miss ratio data (solid lines) with other published

data (4, B, C, D). (a) 16-byte blocks. (b) 32-byte blocks. ’

does not count misses until after 250K references. Since the

trace samples include multiprogramming effect, both contain
some cold-start misses [12]. Lines labeled A and B show

_ the design target miss ratios for fully-associative caches from

28] and [30]. The line labeled C from [2] shows four-way
set-associative miss ratio results from Fig. 17 in that paper. Fi-
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nally, the line labeled D from [27] shows four-, six- and eight-
way set-associative miss ratios taken from hardware monitor
measurements on an Amdahl 470 (Fig. 33 of that paper, as-
suming 50 percent supervisor execution). Fig. 3 demonstrates
that the miss ratios of the five-trace group are consistent with
those measured and/or proposed for actual operatmg environ-
ments.

Despite the similarities with prevrously pubhshed data, miss
ratio data for large caches (greater than 64K bytes) are subject
to greater error, since only a few thousand misses may occur
during a trace sample. To reduce sensitivity to-such error,
results in Section V concentrate on the relationship between
the miss ratios of alternative caches rather than on the miss
ratio values themselves. K s

"IV. SIMULATION TECHNIQUES FOR ALTERNATIVE
DIRECT—MAPPED AND SET-ASSOCIATIVE CACHES

In this section we first discuss two properties, set refine-
ment and inclusion, that facilitate the rapid simulation of al-
ternative caches. We then.develop a new algorithm that uses
both set-refinement and inclusion to rapidly simulate alterna-
tive direct-mapped caches. Next we generalize an algorithm

that simulates alternative set-associative caches using bit se-

lection [34] to one that allows arbitrary set-mapping functions.
Finally we compare 1mp1ementat10ns of the algorithms.

A. Properties that Facilitate Rapld Stmulatlon

Two properties useful for simulating alternative direct-
mapped and set-associative caches are set-refinement® (in-
troduced below) and inclusion (introduced in Mattson et al.
[19]). Here we discuss these properties with respect to caches
that have the same block size, do no prefetching, use LRU
replacement, have arbitrary associativities, and can use arbi-
trary set-mapping functions. Let C1(4 = ny, F = f1) and
C2(A = ny, F = f3) be two such caches, where cache C;
has associativity #; and set-mapping function f;,i =1, 2.

Definition 1: Set-refinement: Set-mapping function f,
refines set-mapping function fi if fo(x) .= f2(y) 1mp11es
f1 x) = f1(»y), for all blocks x and ¥y.

Furthermore, cache C2(4 = ny, F = f) is said to refine
an‘alternative cache C;(4 = n;, F = fi) if set-mapping
function f refines set-mapping function fi. Refines is so
named becauses f, refines f; implies set-mapping function
J> induces a finer partition on all blocks than does f;. Since

set refinement is clearly transitive, if f,, refines f; for each

i =1,L —1 then f; refines f; for all j > i, implying a
hierarchy of sets. We will use set refinement to facilitate the

rapid simulation of alternative direct-mapped caches (Sectron

IV-B) and set-associative caches (Section IV-C).:

Definition 2: Inclusion: Cache Co(A = ny, F = f3) in-
cludes an alternative cache C1(4 = ny, F-= f) if, for any
block x after any series of references, X is resrdent in C1

: 1mp11es x is resident in Cy. :
Thus when cache C; includes cache Cj, Cz always contains

a superset of the blocks in C;. Inclusion facilitates rapid sim-
ulation of alternative caches by allowing hits in larger caches

- 3 Set-refinement is called set-hierarchy in [15]. -
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to be inferred from hits detected in smaller ones. Mattson et

al. [19] shdw when inclusion holds for alternative caches that -
" use the same set-mappmg function (and hence the same num-
- ber of sets). Next we show when it holds with LRU replace-

ment and arbitrary set-mapping functions.

Theorem 1: Given the same block size, no prefetchmg and
LRU replacement, cache C2(A = n,, F = f3) includes cache
Ci(A = ny, F = f}) if and only if set-mapping function f;

refines f1 (set-refinement) and assocratrvrty n2 > n; (nonde-

creasing associativity).
.Proof: Suppose cache C2 includes cache Cj. Suppose

further that a large number of blocks map to each set in both -

caches, as is trivially true for practical set-mapping functions
(e.g., bit selection). To demonstrate that inclusion implies
both set-refinement and nondecreasing associativity, we show
that a block can be replaced in cache C; and still remain in
cache C,, violating inclusion, if either 1) set-refinement does
not hold or 2) set-refinement holds but the larger cache has
the smaller associativity. k :

.. 1) If cache C, does not refine cache Cl, then there exists at
least one pair of blocks x and y such that f>(x) = f2(y) and
S1(x) # f1(»). Since we assume many blocks map to each set,
there exist many blocks z; for which f2(z;) = f2(x) = f200).
Since f1(x) # f1(»), either f1(z;) # f1(x) or f1(zi).# f1()
(or both), implying set-refinement is violated many times.
Without loss of generality, assume that many z;’s map to dif-
ferent f; sets than x (otherwise, many map to a different f
sets than y). Let n, of these be denoted by wy, - - -
sider references to x, wy,: -+, Wp,. Inclusion is now violated
since x is in cache C;, but not in cache C,. It is in cache Cy,
because blocks wy, - -, w,, mapped to other sets than x and

.could not force'its replacement; x is replaced in np-way set-

associative cache C,; since LRU replacement is used and the
n, other blocks mapped to its set are more recently referenced.

2) Let'xq, - -
same Jf» set. Since we are assuming f> refines fi, they also
map the same f1 set. Consider references to X0s X153 Xny-
Inclusron is now violated since Xy is in nj-way set-associative
cache Cy, but not in ny-way set-assocratlve cache C2(n1 > ny
implies n; > ny + 1). :

Suppose cache C, refines cache C and ny > ny. Initially
both caches are empty and inclusion holds, bécause everything
(nothing)-in cache-C; is also in cache C,. Consider the first
time inclusion is violated, i.e., some block is in cache Cj-that
is not in cache C,. This can.only occur when some block xg
is replaced from cache C;, but not from cache C;. A block xo
can only be replaced from cache C,if n, blocks, x; through
Xn,» all mapping to f,(xo), are referenced after it. By set-
refinement, fi1(xo) = f1(x1) = -+-
ny, xo must also be replaced in cache Cj. O

Several corollaries, used to develop the cache simulation
algorlthms in the next two sections, follow directly from the
above definitions and theorem. :

. 1) If cache C; refines cache C; and their set—mappmg func-
tlons /> and fi are different (partition blocks differently), then

cache C; has more sets than cache Cj. The number of sets-

4 Blocks w1, +,Wn, exist if at least 211, blocks map to set f>(x).

4
sWp,.* Con- -

‘,Xn, be a collection of blocks that map to the_ '

= .f1(xn,). Since ny >
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/in a cache is ‘equal to the number of classes in the partition

induced by its. set-mapping function. If f> has fewer classes

. than f; and at least one block maps'tc'every fi class, set-
refinement is'violated since some pair of those blocks must

map to the same f; class. If £, has the same number of classes
as f and at least one block maps to every f; class, then there
exists a one-to-one correspondence between f classes and f;
classes, implying both functions induce the same partition.

2) If bit selection is used, a cache with 2 sets refines one
with 2/ ones, for all i > j. That is, set-mapping function x
mod 2 refines x mod 2/, i > j. For all blocks x and ¥ (x
mod 2’ = y mod 2/) implies (x mod 2/ = =y mod 2/), because
2/ can be factored into positive integers 2~/ and 2/, and (x

mod ab =y mod ab) implies (x mod b =y mod b), for all:

positive integers a and b.

3) Cache C, must be strictly larger than a different cache

€ to include it. Two caches are different if they can contain
different blocks (after some series of references). If cache C,

. is smaller than cache Cy, inclusion is violated whenever C; is
full. If C; and C, are the same size, different, and both full,
then inclusion will be Vlolated whenever they hold dlfferent

blocks. v
4) Set refinement 1mp11es 1nclus1on in dlrect—mapped caches.

" By Theorem 1, inclusion requires set-refinement and nonde-
creasing associativity. Since all direct-mapped caches have as-:

sociativity one, only set-refinement is necessary.
5) Inclusion holds between direct-mapped caches using bit
selection. Implied by corollaries 2) and 4). '
*6) Inclusion does not-hold between many pairs of differ-
ent ‘set-associative caches. It does not hold a) between two

different set—associativecaches of the same size [by corollary

3)], b) if the larger cache has smaller associativity (Theorem

1), and c¢) if set-refinement i is violated (also Theorem 1). Set-

refinement can be violated even when bit selection is used

(e.g., the larger cache is twice as big but has four times the ‘

associativity of the smaller cache). :
7) The includes relation is a partial ordermg of the set'of

caches. The proof of this, omitted here, need only show that -
_includes is reflexive, antisymmetric, and transitive; see [15]."

. 8) Similarly, the refmes relatlon isa partial ordering of the
set of caches.
'9) The refines relation can speed the s1mu1at10n of alter-

native caches that use LRU replacement. Let these caches be:

denoted by C;, i =1, 2, ---. Construct a d1rect-mapped cache
Co(A =1,F = fy) such that all caches C; refine CO For
arbitrary set-mapping functions, fo(x) = 0 can be used; if
all caches C; use bit selection and have 2™ or more sets,
Jox) =x mod 2™ should be used. In any case, s1mulat10n
speed can be improved by deleting-all references. (trace en-

tries) that hit in cache Cy and recording the deleted references
_as hits in all caches simulated. Such deletion is possible when

caches C; include cache Cy and the deleted references would
- not have affected any replacement decisions [25]. Since each

cache C; refines cache C; and Cy is direct-mapped," all caches

. Cy include cache Cy by Theorem 1. All deleted references do

not affect LRU replacement decisions since they are all to
the most-recently-referenced (MRU) block in each set. To see

) why th1s is true for acache Ci(4 =n;, F = f,), consider the
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dlrect-mapped cache Cl(A =1, F = f;) that always contams

- the MRU blocks from cache C;. Cache C] refines cache Co,

since cache C/ has the same set-mapping functxon as cache C;
and cache C; reﬁnes cache Cy. Since refines implies includes

~in direct-mapped caches, all deleted references are in cache
'C} (and therefore to cache C;’s MRU blocks). Puzak shows

this result for b1t-se1ect10n [23]. -

B Stmulatmg Dtrect -Mapped Caches '

" This section develops a new algorlthm called forest Simu-
lation, for simulating alternative direct-mapped caches. For-
est simulation requires that the set-mapping functions of all

caches obey set-refinement. Since typical alternative designs -

for direct-mapped caches use numbers of sets which are pow-
ers of two, with the set selected via bit selectlon this algorlthm
is apphcable to the common case. ,

In the last section, we showed set-refinement 1mp11es inclu-
sion in direct-mapped caches. Forest simulation takes advan-
tage of inclusion, as does stack simulation, .by searching for
a block from the smallest to largest cache. When a block is
found, a hit is implicitly recorded for all larger caches.

The data structure used by forest simulation to store cache

~ blocks is a forest (a set of disjoint trees) where the number of
-~ levels equals the number of caches simulated, and the number
of nodes in level i/ equals the number of blocks frames in the-

ith smallest cache. If bit selection is used by all caches, the
forest can be stored in an array that contains twice as many

elements as the largest cache, since the i — Ist smallest cache,

is at most half the size of the ith smallest cache.

Fig. 4(a) displays a forest for direct-mapped caches of size
1, 2, 4, and 8 block frames. The forest contains only one
tree,  because: the smallest cache has only one block frame,
and is binary, because each cache in this example is twice as

: large as the next smaller cache. We assume here that blocks

are mapped to block frames with bit selection. Each node
holds the information for one block frame in a direct- -mapped
cache. Nodes are labeled with the tag values which they could
contain if bit selection is used for all caches. The node at the
root of the tree has no block number bits constrained, because

a one-block direct-mapped cache can hold any‘ block. This is -

illustrated with a ¢ representing arbltrary hlgh-order bits of the
block number and three x’s representmg DON’T CARES for the

three low-order bits. The tags #xx0 and txx! in the nodes of

level two indicate that the blocks can reside in these nodes are
constrained to have even and odd block numbers, respectively.

"Similar rules with more bxts constrained apply to the rest of

the levels.

“For each reference, the key idea in forest simulation s to
begin at level 1 and proceed downward in the forest until the
reference is found or the forest exhausted. At each level, the
location of the search is guided by the set-mapping function

for that level. At each level traversed, the node examined is

changed to contain the reference. If the node is found at level
i, distance[i]:is incremented. After N references have been

processed, the miss ratio of the 1th smallest dlrect-mapped

cache’is 1 — 3., distance[j]IN. -
- Consider the example shown in Fig. 4(b) and (c) Flg 4(b)
deplcts the forest of Fig. 4(a) after a series of references.

"HILL
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beg 4. Forest. simulation example: the effect of referencing . block 4 on'

dlrected-mapped caches of 1, 2, 4, and 8 block frames. (a) A forest with
blt selection. (b) Before reference to block 4. (c) After the reference

Information in the tree tells us that block 6 is in a cache of size’
one block frame; blocks 6 and 5 are in a direct-mapped cache
of size two; blocks 4, 6, 5, and 3 are in a direct-mapped cache
of size four; and blocks 0 through 7 are in a dlrect-mapped

cache of size eight. Let the next reference be to block 4. A path”
from. the root to a leaf is determined using the set-mapping
function for each cache. A search begins at the root and stops-

when block 4 is found. All'nodes encountered ‘in the search
that do not contam block 4 are modified to do so. The nodes
in bold are examined to find block 4. Since block 4 is located

at level 3, caches at levels 1 and 2-miss and caches at levels’

3'and 4 hit. Fig. 4(c) shows the tree after this reference has
been processed. The nodes in bold now contam the referenced
block.

Fig. 5 shows pseudocode for the algorlthm We w1ll analyze
the performance of forest simulation in Section IV-D.:

The principal limitation of forest simulation is that it only

works for direct-mapped caches. Extending the algorithm to
set-assocratrve caches is possible, but complex, since a for-
est glves only a part1a1 ordering of recently- -referenced blocks
and set-refinement does not imply inclusion in set-associative
caches. Consider using the forest of Fig. 4(b) to. simulate a
two-block fully- -associative cache that uses LRU replacement
Itis not possible to tell whether the reference to block 4 hits in
such a cache, since any of blocks 2, 4 or 5 could be second-
most-recently referenced. :

Forest simulation can be extended to srmulate n-way set as- -

sociativity by replacing each node in the forest by an n-element
LRU stack. At each reference, rather than just replacing the
element at a node with the newest reference, the stack at that
node is updated in the normal LRU manner; the descent in
the tree stops as'soon as the target block is found at level one
in the stack at the current node. This is because, by reason-

ing similar to that used to show corollary 9), the reference ,

will also be at distance one in all further levels. As should -
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integer L. /* number of direct-mapped caches */

/* set-mapping functions that obey set-refinement */
[*ie., f,ﬂ refines f; for i=1,..., L-1. ¥/

funcuon f, (X), «oey fL(X)

mtegcr c, 3o c,_ /* cache sizes (m blocks), let C;be ch and Co =0 ‘/
j=

integer N* /"‘ counts the number of references */

/* distance coums so that mrss muo(A-l F=f) =1- Zdlstance[ll /N "/

i=1

mteger drstance[l L) . .

integer forest[1:Cy] /* the forest */ ;

define map(x, i) = (fi(x) + C;-; ) /* maps the forest into an anay "/

For each reference x {
read(var x)
N++ 5
/* FIND */- cri [N
found = FALSE - :
fori=1toL or found {
'y = forest[map(x, i)]

if (x==y) : )
. . found = TRUE
" METRIC */
. distance[il++
else ' o
/*UPDATE*/

forest[map(x, )] =

) FigVS Forest simulation.

be evident, forest simulation (for drrect-mapped caches) isa
specral case of this general algorithm, with the “n-element”
stack consisting of only one element. :

We do not develop this algorithm further, because the dis-

" cussion of the next section presents two forms of an algorithm
for simulating alternative set-associative caches that is more =

general (set-reﬁnement is not required) or faster.

.C. Stmulatzng Set—Assoczattve Caches

This section develops an algorithm, called all-assoczatzwty
simulation, for simulating alternative - direct-mapped and

‘set-associative caches that have the same block size, do
no prefetching, and use LRU replacement. All-associativity.
“ works - for caches -with . arbitrary set-mapping functions,

but' works. more efficiently if set-refinement holds. All-

associativity simulation does not try to take advantage of in- -

clusion, since 1nclu51on does not hold between many palrs

‘of set-associative caches (see Section IV-A). This work gen- -

eralizes to arbitrary set-mapping . functions an algorithm de-
veloped for caches using bit selection only [19], [34]. The
algorithms discussed in this section can also be extended to
handle multiple-block sizes and sector sizes [24], [34].

“1In theory, the storage required for all-associativity simu-
lation is O(Numque), where Numque is the number of unique
blocks referenced in an address trace. Our experience is that
the storage required in practice, however, is usually much
smaller than the size of modern main memories. Simulation

-of a one-million-address trace having an infinite cache miss

ratio of one percent, for example, requires storage for 10000
blocks. Since blocks can be stored in two words (a tag plus
a pointer), less than 100K bytes are needed. Future simula-
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(@)

Stack
fully-assoc

Fig. 6. - Concurrent stack simulation with one (fully-associative) and two sets

(even and odd blocks partitioned). (a) Separate storage. (b) Shared storage. .
~ : s - 18 smaller, since active blocks are spread across many stacks

- tions of multiple-megabyte caches may require tens of billions
of references to be processed, potentially resulting in excess
storage use. Storage for simulations of finite caches can be
periodically (e.g., every 100 million references) reclaimed by
discarding blocks not in the superset of the caches of interest;
- this latter approach is used in most other simulation algorithms
as well. The algorithms below neglect storage reclamation.

Figs. 9 and 10 at the end of this section present: pseu-
docode for all- -associativity simulation not using and _using
set-refinement. The rest of this section provides insight into
how all-associativity simulation works by developing it from
stack simulation. A reader who understands the operation of
the algorrthms from Figs. 9 and 10 may skrp to the next sec-
tion. :

If we wrsh to srmulate caches that have one, two, and four
sets selected by bit selection (set-mapping functions x mod 1,
x mod 2,;and x mod 4) we can run three concurrent stack
simulations (one with one stack another with two and a third
wrth four: ) Fig. 6(a) 111ustrates the first two stack simulations.
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Due to locality, blocks that reside in one alternative cache

will tend to reside in the other caches. Thus, as illustrated

- in Fig. 6(b), we can save storage by allocating storage for
2 block once and using multiple links to. insert it into the
multiple stacks. For LRU replacement, however, the order of
two blocks in all stacks is always the same (the more-recently-
referenced one is nearer the top) and is unaffected by what
other blocks are members of a particular stack.® This implies
that all links must point down; and therefore can be inferred
instead of stored. o

Instead of following the links of each stack and countrng the
blocks traversed, a block’s stack distance for each set-mapping
function can be calculated by traversing the fully-associative

~ stack until the reference is found or the stack exhausted. For
each stack node y before the reference x is found or the
stack exhausted, we determine whether f;(3) = fi(x) with
each set-mapping function f;. Whenever the equality holds,
we increment stack_count[i]. If the reference is found, all
stack_count[i]’s are incremented. After the reference is found

or the stack exhausted, each distance[i, stack_count[i]] is in-

cremented to indicate a hit to distance stack_count[i] with
set-mapping function f;. Fig. 7 illustrates that this method,
which we call all—assoczatlvzty srmulatron ona reference to
block 2. » :

The above method works for arbitrary, set'—mapping func-
tions. A faster algorithm is possible if f;.1(x) refines f;(x),
fori =1to L ~1. All-associativity simulation can take advan-

tage of set-refinement two ways. First, if f; implies multiple

sets (not fully-associative), the algorithm .can operate on the
number of stacks induced by.f7 instead of simulating with one
long fully-associative stack. The information lost by not main-
taining one stack is the relative order of blocks in different £,
sets. This information is not needed since the contrapositive of

the implication used to define refines i is fi(x) # Ji(y) implies -

Jiz1(x) # fir1(¥). Thus, two blocks in different f; sets will
- never be compared. Simulating with multiple stacks is faster
than simulating with one, because the average number of ac-
tive blocks the algorithm must look through to find a block

(e.g., 512 stacks for simulating the VAX-11/780° s cache [11]).

Second, the examination of “ f;(x) =
to 1”* can be terminated the first time f;(x) equals f;(y), since
the set-refinement forces the equality to hold for all smaller
. Furthermore, instead - of incremenﬁng stack_count[i] for
each i where ‘the equality -holds, we need only increment

Stack_partial count[i] for the maximum i for which it holds.

When the processing for a reference terminates, we can com-
pute stack_count[i] as E _; Stack_partial count[j] and in-
crement dzstance[l stack count[z]] fori =1, L Thus using

* 5In RANDOM replacementy, on the other hand, two blocks can be re-
ordered in one group of stacks and not another if the current reference maps
below them in_one set of stacks and to another stack in another group of
stacks. Consider blocks 0, 1, and 2 and a fully-associative stack and a pair of
stacks for even and odd blocks. Reference 1, 0, and 2. The fully-associative
stack holds (2 0 1), while the even and odd stacks hold (2 0) and (1). Now
rereference block 1. RANDOM replacement requires that there is a 50 per-
cent chance that the fully-associative stack changes to (1 0 2). Since the even
stack is unaffected by a reference to an odd block, it remains as (2 0) and
blocks 0 and 2 are now in‘a different order in different stacks.

fiy fori =L down
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k , Fully-Assoc - Two Sets Four Sets
¢ . ‘ o w=0 f(x)=xmod2 £(x)=xmod4 -
Stack Block 2 Same stack_ Same - stack_ Same  stack_
fully-assoc found? set? countf1] . set? count[2]‘ set? count[3]
‘ no yes B \ yes 1 yes . 1
x " no yes » 2 no . 1 no 1
1 "~ no ~oyes - 3 no_ 1. no 1
no yes -4 yes 2. no 1
? no yes 5 yes. . <3 no 1
! no ye§ R no '3 . nb_ 1 !
! yes’ yes 7 yes ‘ 4 yes 2
{ .
I . ‘ , ,
1 Stack =7 =4 v =
: i Distance: : R ] 2
; ) ' Fig. 7. All-associativity simulation example: referencing block 2 in caches
L P . with 1, 2, and 4 sets. ’
R . S Stack Number of . stack_partial stack_partial stack_partial
fully-assoc LSB matched _count[0] _count[1] -~ count{2]
:
{ 2 ‘ 0 0 1
_f. / -
; 0 1 0 1
2 0 2 0 1
e 1 2 1 1
1 1 2 2 1
f
S ‘ 0 3 2 7
i1 iR
T found
8
). ‘ Stack 34242
m. o . ‘ - Distance: : =7 T 4 ‘='2
;e Fig. 8 All- assomatlvxty simulation with set-refinement example: refcrenc-
T ing block 2 in caches w1th 1,2, and 4 sets.
or
nt - ' . ' T
A set-refinement reduces the inner loop of all-associativity sim- - D. Implementatzon and Compartson of Simulation
h: ulation with L set-mapping functions from L compares and 0 " Algorithms ‘
i o L increments, to 1 to L compares and 0 or 1 increments.
n- t L P To study -the performance of stack, forest, and all-
i - Since the expected number of compares in the improved al-
ng 6 associativity simulation and to study CPU caches per se, we
: gorithm can be as small as two,° this can result in nontrivial
; implemented these algorithms in C under UNIX 4.3 BSD.
: savings if L is large. Fig. 8 illustrates th1s optimization on. .
- Stack and forest simulation were added to a general cache
r reference to block 2.
aps simulator that originally contained 1250 C statements’ [14].
‘Sé ‘ : " . Adding stack simulation increased total code size by 150 state-
ive 6 Assume sets are selected with bit selection and the least-significant address ments, and adding forest simulation, 220 statements. 'Stack -
low bits of nodes in a stack are uniformly distributed. The probability that exactly - simulation is 1mp1emented using linked lists. The forest sxm—
rer- ileast significant bits match is 1/2/+!. The number of iterations given an i-bit
ven match is i + 1, with the final iteration used to detect the ﬁrst mismatch. The
and expected number of iterations does not exceed two, since Y <, (i + 1)/ 2’“ -7 Measured by the number of source lines containing a semicolon or closing

2. L

brace
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v s t Lo TABLEII
. ... SMULATION TIMES ’
Cache o ; Run-time in sec/1M-references (normalized)
Size Associativity - -
~ (bytes) Stack® " Forest All-Associativity
<trivial trace> 3043 (0984) | 304.7 (0985) | 2946 (0952
16K 1-way 3093 (1.000)'| 307.6 . (0.994).| 3008 (0.972) )
- 16K 4-way 3125 (1010) | . - - | 3092 (1.000)
1K 10 8K T-way 12344° @40) | 3261 (1.054) | 4029  (1.303)
16K10128K . l-way 12344%  (40) | 3210  (1.038) | 3323  (1.074)
16K 10 128K I-, 2- & 4-way || 18066° (6.0). |  — | 3666 (1.185)

¢ % Instead of determining the time for each stack simulation, we optimisti-v
cally approximate the time required as the time for a fast stack simulation
(128 kbyte direct-mapped cache) times the number of runs required. -

integer L /* number of set-mapping functions 2

* function fy(x), ..., fy(x) /*arbitrary set-mapping functions “/
integer N /* counter for the number of references */ -~ -
integer max_assoc /* maximum associativity for metrics %/
/* distance counts so that miss_ratio(A=k, F=f;) = 1 - Y distance(i,jl/N*/ .- " - ) . ¥

. j=1 . . . .

mteger distance[1:L, 1:max _assoc]

- integer stack count[l L] [*stack dlstance counters. reset for each reference "‘/

deﬁne stackmde type {
integer block_number

. stacknode_|f *next
)
stacknode_type *stack /*. top of stack pomter * ‘ -
/* Let Nynigue be the number of umque blocks referenced. */ ) ) . ' S
stacknode _type stacknodes[1:0(Nymiguc)] /* dynamlcally allocated pool of stacknodes. "/ :
" For each reference x { ) oo ‘ . : e ‘
. fori=1 1oL { stack_count(i] = 0 ) :
read(var x)
N++ ) L ‘ :
/*FIND ¥/ . EER ’ - S T
found = FALSE i L i : -

previous_node_pointer = NULL
node_pointer = stack
while ((NOT found) AND (node_pomter' NULL)) [

B R - y = node_pointer->block_i number

; i (u==y) -
: found = TRUE = -
5 - fori=1to L { stack count[1]++ }
} . .
else { : R :
fOl‘l—llOL[ : ‘ ‘ .
if (f; (x)--f (y)) stack count[x]++ )
) S ~ - previous_node_pointer = node_pointer
: e s *..  node_pointer = node_pointer->next
} .
. /* METRIC ¥/
if (found) (
for i=1 toL[ . :
/*Record hits to drstances <i max_assoc. */ '
. if (smck count[l]Smax assoc) dxstance[n stack _count(i]}++ ) : B e oo
} : . :
)

/* If found, move the stack node of x o the top of the stack oo
/* Otherwise, store x in a new stacknode and move it to the lop of the stack */

. ' ' . o UPDATE(x, found prevnous node _pomter node, __pomter)

F1g 9 All assocratrvrty mmulanon

tor above and w1th the set-mappmg function restricted to bit

~ulation 1mplementat10n restrlcts the set- mapplng functions to

be the block number modulo the cache size in block frames,
a'slight generalization of bit selection. We implemented all-
assocratlvxty simulation i in a separate program containing 800
C statements ‘and havmg far fewer OptIOIIS than the sunula-

selection.

Table II lists s1mulat10n t1mes for. C language 1mplemen—
tations of stack, forest, and all-associativity simulation. All
caches srmu]ated have 32- byte blocks, do no prefetchmg, use
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integer L /* number of set-mapping functions */ Lol e i - A i
/* set-mapping functions that obey set-refinement, */ ’ ‘ : ’ :
M*ie., i, refines f; fori=1, ..., L-1.%/ . . . . L . : . . ke
‘ function fy (%), o, f.(X) . , : : . R
: integer number_of_stacks /* number of sets induced by f, (x) /. - ) ’ :
: integer N /* numbser of references */

' integer max_assoc /* maximum associativity for metncs */

: . . e dlstance counts so that miss, rauo(C(A-k F-f ) =1- destancc[l, JI/N */
i : ‘ /-1
; R integer distance[1:L, 1:max assoc] :
- integer stack_partial_count[1:L] /* stack distance counters; reset for each reference. */
define stackmde_lype { ' v
. integer block_number
stacknode_type *next ;
i : . stacknode_type *stack[0:number of stacks-l] /* top of stack pointers "/
ji . . . ’ /* Let N .., be the number of umque blocks referenced. */ .
! : smcknode type stacknodcs[l O, )] ™ dynamxcal]y allocal.ed pool of stacknodes */

£ : ST For each reference x {

; o . . . fori=1toL { stack, _partial_ counl[n] 0}

P T . . _read(var x)

; _ ‘ : N++ ' e -

, o ' ~ - stack_number = fy (x) - . o

' ‘ o [*FIND*/ =

* found = FALSE S -
previous_node_pointer = NULL .

_ node_pointer = stack[stack_number]

: whlle ((NOT found) AND (node. _pomtcr'-NULL)) [

y =node. _pomier->block number

v 3 , I T |
i ’ R : found = TRUE :
stack_partial_count[L]++
) -
else {
. match = FALSE
- for i=L. down to 1 OR match {
if (f;(x)==fi(y)) { . ~ . S
match = TRUE i ) R
R stack_partial_count[i]++ .
: previous_node_pointer = node_ pointer
node_pointer = node_pointer->next -
i <} : P
B ) S
; /* METRIC ¥/
! lf (found) {
: . ) S stack_count = =0
! . i Lo ¢ fori=L downto 1 {
P - . - stack_count = stack_ count+stzck _pamal coum[n]
“ f*Record hits to distances < max_assoc. */
if (stack coums max_assoc) dlstancc[x, stack coum]++

. /* If found, move the stack node of xto thc top of its stack */ .
. [* Otherwise, store x in anew stacknode and move it to the top of the stack. */ -

UPDATE(x stack numbcr, found prevxous node, _pomlcr node_pomter)

Fig.’ 10. All-assocxatlvuy,sxm’ulanon wnh set-refinement.
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LRU replacement, are unified (data and instructions cached to-
gether)-and use bit selection. Results in the first row (“‘trivial
trace”) are for a trace consisting of one million copies of the
same address, yielding one miss and 999999 hits. All other
results presented here are for a trace of one million memory
references from system calls generated by an Amdahl stan-

dard MVS workload [28]. We also examined traces from three"

other architectures [15]. We omit these results here, since they
are similar to those with the MVS trace. Results not in paren-
theses are the elapsed virtual times in seconds for simulation
runs on an otherwise unloaded Sun-3/75 with 8M of memory,
no local disk, and trace data read from a file server via an
ethernet. Results in parentheses are normalized to the time for
stack simulation to simulate a srngle 16 kbyte drrect-mapped
(1-way) cache with the MVS trace.

We' compare these algorithms using only memory trace
data, as opposed to data from other caching systems, be-
cause set-associativity. is rarely used outside of CPU caches.

Readers interested in simulation performance times for fully- -

associative caches, driven by traces of memory and disk ref-
erences, should consult [33].

The simulation times in Table II allow us to answer the fol-
lowing three questrons regardmg how these implementations
perform.

1) Are the implementations comparable?”

Yes. We determine that implementations are comparable by
simulating single caches, which, in theory, require the same
simulation time. For a synthetic trace and a real trace and for
two associativities, we found the virtual times (CPU times)
for implementations of stack and forest simulation differed
by less than'0.5 percent, while the implementation of all-
associativity simulation is 1-3 percent faster (see Table II).
That all-associative simulation is slightly faster is not surpris-

"ing, since it was implemented in a separate program, while
stack and forest simulation are part of a more powerful cache
simulator.

2) What algorlthm is fastest for simulating a collectron of

direct-mapped caches of similar size?

Forest simulation. However, forest 51mulat10n is not sig-
nificantly faster than all-associativity simulation if caches are
large. Both forest and all- associativity‘simulation are much
faster than stack simulation since they require only one run,
whereas stack simulation needs one run per cache size.

3) What algorithm is fastest for simulating a collection of
d1rect-mapped and set-associative caches of similar size?

All-assoc1at1v1ty simulation. All-associativity simulation re-
quires only one run, which is not much slower than a single,
* simple simulation run. Forest simulation is not able to simu-
“late nondirect-mapped caches. Stack simulation requires one

* run per unique numiber of sets. Simulating caches of ¢, 2c, 4¢

through 2°¢ block frames with associativities' 1, 2, 4 through

2¢ requires s +a — 1 stack simulations. One with c /2% sets,

a second with ¢ /21 sets, - - -, another with ¢ sets, another
with 2c sets, - -
in the final row of Table II, for example, required six stack

simulations, using 128, 256, - - - and 4K stacks, respectively.

* The speedups illustrated here for trace lengths of one mil-
hon references (30 min down to 6 min) are impressive, but not

-, and finally one with 2%c sets. The simulation
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critical. Traces to exercise multiple-megabyte caches, how-
~ever, will be much longer. All-associativity simulation will

allow billion-reference traces to be processed in a few days -

rather than a few weeks. Furthermore, simulating a wide va-.

riety of caches in one pass as a trace is generated facilitates
simulations with traces too large to store.

V. THE RELATIONSHIP BETWEEN Assocumvn'Y
AND MISS RATIO

In this sectron we analyze how changes in associativity al-
ter cache miss ratio. We find empirically that some simple

_relationships exist between the miss ratios of direct-mapped,

set-associative, and fully-associative caches, largely indepen-
dently of cache size. We concentrate on the relationship be-
tween miss ratios of alternative caches, rather than the abso-
lute size of miss ratio, because our traces samples are short,
never exceeding 500K references. We assume throughout that

" caches have a fixed block size, use LRU replacement, ‘dono -
prefetching and pick the set of a reference with bit selection.

A. Categorizing Set Assocmtlve Misses

The simulation algorlthms described earlier facilitate com-

~ puting the miss ratios for many alternatrve cache sizes and.

associativities. These data can be used to increase our under-
standing of a single cache’s miss ratio. We do thls by subdi-
vrdmg the observed mrsscs into three categorres (set- -)conflict
misses (due to too many active blocks mapping to-a fraction

of the sets), capacity misses (due to ﬁxed cache s1ze), and
‘compulsory misses (necessary in any case 9). ’

The size of these components can be calculated as follows.
First, the conflict miss ratio is the cache’s. miss ratro less the

- miss ratio for a fully- associative cache of the same size. Sec-
-ond, the capacity miss ratio is the fully-associative cache’s

miss ratio less the miss ratio for an infinite cache (one so

Jlarge it never replaces a block). Finally, the compulsory miss
ratio is the infinite cache’s miss ratio, which is not zero since
initial references to blocks still miss. This categonzatron is

easy to compute, since it can be derived from average miss ra-
tios and does not require a detailed manipulation of simulation

‘programsv (as does the model in [3D.

- Table III illustrates this miss ratio categorization ‘“‘ue,” a
trace of VAX-11 1nteract1ve users under Ultrix (see Tab]e D.
All ‘miss ratios are warm-start and for a unified cache with
32-byte blocks. Under each miss ratio component, the first
number is the component’s absolute size, while the second is
its relative contribution to the overall miss ratio. The reader
should concentrate on trends rather than-miss ratio values,
since this table only gives results for three short trace sam-
ples of one workload. Compulsory miss ratios and results for
larger caches are subject to more error. (That one conflict miss
ratio is, negative (eight-way set-associative 1 kbyte cache) is
unimportant, since 1) the magnitude is very small (—0.0006),

. indicating that cache has approximately the same miss ratio as

fully- assocratrvc cache, and 2) the behavior is possible [31] )
For this trace, we see 1) the absolute size of the conflict miss
ratios for set-associative caches (not direct-mapped) are small,

9 That is, necessary without violating our assumptions of a fixed block size,
LRU replacement, no prefetching, and bit selectlon
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TABLE III -
* THReE Miss RATIO COMPONENTS

Cache Size Degree of Miss Miss Ratio Components (Relative Percent)

(bytes) Associativity Ratio Conflict Capacity Compulsory
1K 1-way 0.1913 00419 - 2%. | 0.1405 ' 73% || 0.0090 5%
1K 2-way 0.1609 0.0115 7% 0.1405  87% | 0.0090 6%
1K 4-way 0.1523 || 00029 . 2% 0.1405  92% || 0.0090 6%
1K 8-way 0.1488 (| -0.0006 0% 0.1405 . 94% - 0.0090 = 6%
2K l-way 0.1482 0.0361 8% 0.1032 : 70% 0.0090 6%

-2K 2-way 0.1223 00102 = 8% 0.1032 84% 0.0090 7%
2K 4-way 0.1148 0.0027 2% 0.1032  90% | 0.0090 8%
2K 8-way 0.1128 0.0006 -~ 1% 0.1032 91% 0.0090 8%
4K 1-way 0.1089 00270 25% | 00730 67% | 0.00%0 8%
4K 2-way 0.0948 00129 14% |. 00730 77% | 0.0050 9%
4K 4-way 0.0868 0.0049 6% 00730  84% || 00090  10% |-

T 4K 8-way 0.0842 0.0022 3% 0.0730 - 87% || 00090 11%
8K 1-way 0.0868 0.0257 30% | 00521 60% | 0.0090  10%
8K 2-way 0.0693 00082 12% | 00521  75% | 0.0090 13%
8K 4-way 0.0650 - | . 0.0040 6% 0.0521 =~ 80%. || 00090 14%
8K 8-way 0.0629 0.0018 3% 00521 83% || 0.0090 - 14%

16K < - l-way 0.0658 00194 - 29% | 00375 57% || 0.0090 14%
16K 2-way 0.0535 0.0070 13% 0.0375 70% 0.0090 17%
16K | 4-way - | 00494 | 00029 6% | 00375 . 76% [ 00090 18%
16K 8-way 0.0478 0.0014 3% 0.0375 . - 78% 0.0090 19%

32K 1-way 0.0503 0.0134 21% 0.0279 55% 0.0090 18%

32K 2-way 0.0412 00043 11% | 00279 68% | 0.0090 - 22%
32K 4-way 0.0383 00014 . 4% 00279  73% || 0.0090 . 23%
32K 8-way 0.0377 0.0008 2% 0.0279 4% 0.0090 24%

'V'kmakmg further increases in associativity. of limited benefit,
2) the absolute size of- conflict miss ratios for direct-mapped-

caches gets smaller with increasing cache size; making .in-
creasing associativity less important, and 3) the compulsory
miss ratio is fixed but gets relatively more important with in-
creasing cache size, limiting the potential benefit of further
cache size increases. One deficiency of this categorization is

- that the magnitude of the capacity miss ratio does not bound

the miss ratio reduction that increasing cache size can yield.
This is because increasing cache size also increases the num-
ber of sets, reducing the conflict miss ratio. -

B. How Set-Associative Miss Ratios Relate to
Fully-Associative Ones

It has been previously s_hoWn [26] that set{assbciativerhiss
ratios can be'closely‘. estimated from- fully-associative ones;
this observation was validated for several traces for 16 and 64

sets. We review that calculation in this section, and validate -
~the results over a larger range of cache sizes and number of -
- sets.

The model derives LRU distance probab111t1es wrth s
sets Di(s), from fully- assocratrve LRU distance probabilities,
g;i. pi(s) is the probability a reference is made to the ith most-
recently-referenced block in one of s sets, while g; is the prob-
ability a reference is made to the ith most-recently -referenced
block in any set.. Consequently, g; = p;(1). LRU distance
probabilities are equrvalent to the miss ratios of caches using
LRU replacement The miss ratio for an n-way set-associative
cache with s sets is 1 — L, _ Di(s), while the miss ratio for
an n-block fully -associative cache is 1 — Y1, g;.

‘Bayes rule

probablhtres

p,,(s)\= ZProb(L_RU distance n with s sets
i=1 , ’ .
/| LRU distance i with 1 set) - g;.

10 For some-event 4 and a set of mutually exclusive and exhaustive events

. By, Bayes’ rule states that Prob(4) = X Prob(4|B;) - Prob(B;).

allows us to exp'ess a set-associative LRU -
. drstance probablhty in terms of fully-associative LRU drstance
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The above equation can be used to estimate set-associative

LRU distance probabilities from fully-associative LRU dis- =
tance probabilities, or equ1va1ently set-associative miss ratios

from fully-associative miss ratios, using a simple approxima-
tion for Prob(LRU distance 7 with s sets|LRU distance  with
1 set). The approxrrnatlon i based on the assumption that
the probability that twovblocks map the same set is 1/s and

independent of where other blocks map. A reference to set- ~

associative distance n occurs if exactly n — 1 more-recently-
referenced blocks map to the reference’s set, while a reference

‘to fully-associative distance i/ implies i — 1 blocks are more-

recently-referenced. By the above assumption, the probability
that exactly n —1 of the i ~1 more-recently-referenced blocks
map to the set of the refererce is O for n > i and approxi-
mately

l—l |:i:|n—1 |:S—'1:|}—n .
o - - S forn <i.
n—1 S I s o

~Substitution yields

Loo i..i n—‘l = /i—n_
pn(s) S H ) [ssl],-qi-

i=n n—l ;

Fig. 11 shows actual miss ratios (sol_id lines) and miss ratios

- predicted with the above equation (dashed lines) for associa-

tivities 1, 2, 4, and 8..Data are based on using trace “mul2’

- to drive a unified cache with 32-byte blocks. Results here and

for several other traces [15] yield three conclusions. -
- 1) The predictions are quite accurate: In most cases, the
relative error is less than S percent; only rarelv is it greater

_than 10 percent.

2) Predictions are uSually more pessrmrstrc than the actual ‘
miss ratios. The cause of this phenomenon is that blocks se-
lected with bit selection collide slightly less often than blocks -

" whose set is selected at random (as the above approxrmatron

assumes), due to spatial locality .[26]. ‘

3) The relative error gets smaller with increasing assocratlv-
ity, which is expected since many-way - set-associative caches
have miss ratios riearly identical to fully-associative caches.

That this method is accurate is not important for deriving
set-associative miss ratios, since all- associativity simulation
allows exact values to be calculated efficiently. Rather, it is
important in that it provides insight into the difference between’
set-associative and fully-associative miss ratios, showmg that
the actual increase in miss ratio is nearly identical to the in-
crease that results from assuming that active blocks map to
sets with indépendent and equal.probability;

C How Set-Associative Miss Ratios Relate to Each Other-

Empirically we see that miss ratio is affected by changes
in cache size, block size, and associativity. We would like to
find some simple rules that can be used to quantify changes in
associativity oncache miss ratios; we do that in this section.

We find that- by exammmg ‘relative miss ratio differences

-rather than absolute miss ratio d1fferences one can almost

eliminate the effect of cache size. Consider an n-way set-
associative cache and a 2n-way set-associative cache, hav-
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Fig. 11. Predicted (dashed) and erctual (solid) mis‘s\ ratios for trace * ‘mul2”
with caches of associativity 1, 2, 4, and 8. (a) Smaller caches. (b) Larger
caches.

ing the same capacity, the same block size, and miSs ratios
m(A = n) and m(A = 2n). Let the miss ratto spread be the
ratro of the miss ratios; less one o S :

'mm—m—mM~M)
-m(A ",2'1)

mA=n
m(A =2n)

.
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Figs. 12 and 13 and Table IV present data from trace-driven
simulation. As discussed in Section III, data for larger caches

are subject to more error than data for smaller caches, and.

measurements’ for caches larger than 64K should be treated

with considerable caution. Fig. 12" shows some miss ratio -
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spreads of : unified caches with 32-byte blocks for the ﬁve—
and 23-trace groups. Fig. 13 examines miss ratio spreads. for

ingtruction and data cache with the five-trace group. The av-

erage miss ratio spread is computed using the ‘ratio; of -the
average miss ratios. Dashed ‘lines present raw data,. while

solid lines are smoothed using a weighted average of adjacent -

‘

* | Cache Block Size 16 Bytes
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TABLE IV .
SMOOTHED Miss RATIO SPREADS .
. : ;>Smoothed Miss Ratio Spreads for Unified Caches ) - :
Cache , Block Size 16 Bytes Block Size 32 Bytes - - Block Size 64 Bytes - .

Size || 8-to4 | 4-t0-2 | 2-to-1 || 8-to-4 [ 4-t0-2 | 2-to-1 || 8-to4 | 4-10-2 | 2-t0-1
1K 4% 9% 20% 5% 10% 30% 5% -12% 41%
2K 5% | 10% 2% 5% 12% [:29%: | 6% 13% 38%
4K 5% 11% 23% || 6% 12%. | 29% 7% 14% 38%
8K |- 5% - | 10% 25% 6% 12% 29% | 7% | 14% | 37%
16K 5% 10% .. | 26% 5% 2%, | 31% || 7% 13% 38%

. 32K 5% 10% " 28% || 5%. | 11% 2% || 6% 13% 38%

64K 4% | 10% 28% 5% 1% 33% 5% 12% . |73%% /|

128K 5% 10% 28% . || 5% 11% 33% 5% 12% 40%

256K 4% |-10% | 28% ||°5% | 12% 34% 6% 13% 40%"

AVG 5% 10% |:25%- 5% 11% 31% 6% < | 13% 39%

Smoothed Miss Ratio Spreads for Instruction Caches

" [ Cache Block Size 16 Bytes . Block Size 32 Bytes Block Size 64 Bytes
Size .|| 8-to-4 | 4-10-2-| 2-to-1- || 8-104 | 4-t0-2 | 2-10-1 | 8-t04 | 4-10-2 | 2-t0-1
1K [[.. 5% 11% 16% 4% 11% 16% .|| - 6% 10% 16%
2K || 6% 13% 18% || 5% 4% | '17% |} 6% 13% | 18%
4K || 6% | -13% 20%. || - 6% 15% |- 20% 7% 15% 20%
8K % | 13% 22% 7% 15% 23% % 15% 24%
16K || 7% 13%: | 26% | 7% |' 14% | 28% || 7% 15% 29%
32K ) 6% 12% 28% |: 7% |-14% 30% || 7% 15% 32%
64K 5% 1% 30% 6% | 12% | '32% | 6% 13% 35%
128K 4% 11% | 29% 5% 12% | 32% | 5% 14% : | .35%
256K 3% 8% 28% || 4% 10% 31% 4% 12% 36% .
AVG |- 6%’ 12% 4% 6% 13% 25% 6% | 14% | 2%

. Smoothed Miss Ratio Spreads for Data Caches

Block Size 32 Bytes -, Block Size 64 Bytes
Size | 8-t04 | 4-102 | 2-t0-1 || 804 [ 4-t02 | 2-1o-1 || 8-104 | 4-102 | 2-to-1
IK[-6% | 13% | 21% || 6% | 14% | 30% | 7% | 14% | 33%
2K || 6% |:12% |- 28% || 7% .| 13% | .31% | 8% 14% | 35%
4Kl 6% | 1% ] 26% [[-7% | 13% | 29% | 8% | 14% | 34%
8K.(|'5% | 10%|.26% | 6% | 11% :} 30% (. 7% | 13% | 36%
16K || 4% 9% | 24% || 5%. . 10% | 28% || 6% | 12% | 35%
32K ||73% | 8% | 4% || 4% 9% |-29% || 5% | 11% | 36%
o) 64K 1 3% [0 8% [123%. [1.3% | 9% | 28% (. .4% .| 11% | 35%
128K | 3% | 7% | 2% || 4% | 9% | 29% |. 4% 11% | 36%
256K || - 3% 1% [ 20% || 4% 9% | 21%!| 5% | 12% |135% | .
AVG [[: 4% 9% [ 24% || 5% [ % | 29% [ 6% | 12% [ 35% |

spreads ‘(re_ct)mmended in [9]). wé selected the weights to re-
duce variation between adjacent spreads, without suppressing

larger trends. We assigned a weight of 0.20 to both adjacent '

spreads and 0.15 to spreads two sizes away; leaving a weight
of 0.30 for the spread being smoothed

* Table IV shows similar results from an alternatrve computa- '

tion, taking the geometric average of the miss ratio spreads of
1nd1v1dual traces. This method yields slightly larger spreads
than those calculated using the ratio of average miss ratios(as
in Fig.-12). Miss ratio.spreads in rows labeled ‘“AVG” are
calculated by taking the geometric mean of the ratio of miss
ratios for cache sizes from 1K to 256K bytes. - ‘

. These results together w1th more data in [15] exhlbxt the
-following trends. :

1) Miss ratio spreads for caches wrth more restrlcted asso-
ciativity are larger, 1mplymg, for example, that direct-mapped
and two-wayset-associative miss ratios are further apart than
‘two-way and four-way set-associative miss ratios. This result
corroborates the previous work of many others. .

-+2) Except for small instruction caches, miss ratio spreads
do not vary rapidly with changing cache size, even though the

- miss ratios in their numerators and denominators vary.by over

‘an order of magmtude The miss ratio spreads between small
direct- -mapped and two-way set-associative instruction caches
are smaller than many othér spreads due to the sequentlal
behavior: of instruction reference streams, which minimizes
the usefulness of increasing assocxatrvrty in small 1nstructxon

.
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caches [31]. This sequentrahty is much less of a factor for large
instruction caches, and for such large instruction caches, the
miss ratio spreads are similar to those for data and unified
caches. The only major exceptlon to these observatlons is the
| miss ratio spread between dlrect-mapped and two-way set-
assoc1at1ve 128 kbyte caches with the five- trace group.: We
believe that the cause of this aberration lies in the particular
traces and trace lengths used not in some. property of 128
- kbyte caches.:

3) Miss ratio spreads are posrtlvely correlated w1th block
size. While the difference is not important with wide associa-
tivity, the miss ratio spread between direct-mapped and two-
‘way set-associative unified caches with the 23-trace group in-
creases from 25 to 31 to 39 percent as block size goes from -
16 to 32 to.64 bytes. The reason for this is that for a given
cache size, as the blocks become larger, the number of sets
decreases, and the probability that two active blocks map mto
the same set increases (i.e., bigger blocks are more hkely to
“bump into each other”’.)

4) Miss ratio spreads between unified and data caches are
similar. Instruction cache spreads are similar or smaller (see
also [10]). Miss ratio spreads between direct-mapped and two-
way set-associative instruction caches are signiﬁcantly smaller
than other spreads as has been observed elsewhere [31]."

Since the miss ratio spreads-do not vary greatly with cache

size, we can provide insight into the relationship between miss -

ratio and associativity by computing miss ratio’ spreads aver-
aged over many cache sizes, as is done in Table IV. To one
significant figure, halving assocratlvrty with these traces from
eight-way to four-way. to.two-way . to direct-mapped causes
_miss ratio spreads of 5, 10, and 30 percent regardless of
cache size,: cache type, or block size. Equivalently, one can
look at set-associative miss ratios relative to direct-mapped
or fully-associative ones, as depicted in Table V. Relative to
direct-mapped, the miss ratios for eight-,- four- and two-way -
_set-associative are, respectlvely, about 34, 30, and 22 percent -
lower. Assuming that eight-way set-associative is effectively
- fully-associative, the miss ratio increases -by- 5 percent for
four-way, 17 percent for two- way, and 52 percent for dlrect-
mapped.

Our examination of miss ratios for caches w1th dlfferent
associativities has shown that the miss ratio spread does not
change significantly over a wide range of cache sizes, with
exception of small instruction caches, for which the spread is
unusually small. Consequently, the absolute miss ratio differ-
ence decreases as caches get larger, since absolute miss ratios

get smaller. When the absolute miss ratio difference becomes -

sufficiently small, an interesting change occurs: the effective
access time of a direct-mapped cache can be smaller than that
of a set-associative cache of the same size, even though the
direct-mapped cache has the larger miss ratio. This change
occurs when implementation differences, that have previously

_ been ignored, become more important than absolute miss ra--

tio dlfferences This topic is con51dered in some detall in [16]
and [22]. - : S .

D. Extendmg Deszgn Target Miss Ratzos

" In [28], it was noted that absolute miss ratros ‘computed
from trace-driven simulations were often optimistic. That pa-
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TABLE V
- ReLATIVE Miss RaTio CHANGE

Relative Miss Ratio Change for the Five-Trace Group
Cache Block || From Direct-Mapped To From Eight-Way To

Type Size [} 8-way | 4-way | 2-way | 4-way | 2-way | l-way

o 16 S31% | 27% | -20% 5% |:17% 47%

Unified .| 32 -33% -30% | -22% 5% 2 18% 52%

. 64 -38% | -34% | -26% 6% 21% 63%

16 31% | -27% -20% 5% |:17% 48%

Instruction 32 -32% 28% | -21% 6% 18% 51%

64 || -33% | -30% | 2% || 6% [ 18% | 54%

16 -32% | -29% -21% 5% + 16% 48%

Data 32 4% | 31% | -23% 5% 17% 52%

| 64 -39% | -35% | -26% || 6% 20% A%

Relative Miss Ratio Change for the 23-Trace Group -
Cache Block || From Direct-Mapped To From Eight-Way To
" Type Size || 8-way | 4-way | 2-way |l 4-way [ 2-way | l-way
16 30% | 21% | -20% 5%. 15% 4%
Unified 32 -35% | -32% .| -24% 5% |.11% 54%
64 -40% | -36% | -28% 6% 20% 67%
.16 31% | 21% | -19% 6% 17% 45%
- | Instruction 32 -32% | -28% | -20% 6% | 19% 49%
) 64 -34% | -30% | -21% 6% 20% | 53%
- 16 29% | -26% | -19% 4% 14% 42%
Daa " | 32" || -33% | --30% | -22% 5% 16% 50%
: 64 -38% .| -34% | -26% 6% 19% 61%

per then presented design target miss ratios which were miss _

ratios derived from hardware monitor measurements, personal

experience, and trace-driven simulations using realistic work- -

loads; those miss ratios were intended to represent realistic

figures for real systems under real workloads. The data in

[28] presented ‘miss ratios for fully associative caches with
16-byte blocks, broken down into figures for unified, instruc-

_tion, and data caches. In another paper [30], the design target

miss ratios were extended to block sizes ranging from 4 to 128
bytes. This was done by finding the relative change in miss
ratio as the block size changed (by taking ‘“ratios of miss ra-
tios” for a variety of traces) and propagating the design target

_miss ratios for 16-byte block to other block sizes.

We use the same method in Table VI to extend the design
target miss ratios to caches of limited associativity. We as-
sume that eight-way set-associative miss ratios are equal to

“the fully-associative design target miss ratios, and compute

other set-associative miss ratios using the smoothed ratios of
miss ratios shown in Table IV. We do not extend the design
target miss ratios to caches larger than 32 kbytes, because the
original design target miss ratios in [28] and [30] are limited

to caches of 32 kbytes or less, and the methodology for ex- -
tending them to larger cache sizes is beyond the scope of this .

paper; note, however, that data in [27] suggest that as a rough
rule of thumb, the miss ratio drops as the square root of the
cache size. .

VI. CoNCLUSIONS

We have examined properties and algorithms for simulating
alternative caches and have examined the relationship between
associativity and miss ratio. We find that both inclusion (that
larger caches contain a superset of the blocks in smaller caches
[19]) and set-refznement (that blocks mappmg to the same set
in larger caches map to the same set in smaller caches) can
be used by forest simulation, a new algorithm for rapidly

~ simulating alternative direct-mapped caches. We show that in-

clusion is not useful, but set-refinement can be ‘useful for
all-associativity simulation, an algorithm for rapidly sim-
ulating alternative direct-mapped, setjassociative, and - fully-

HILL .
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TABLE

VI

DEsiGN TARGET MISS RATIOS

. Design Target Mlss Ratios for Unified Caches
Cache Block Size 16 Bytes Block Size 32 Bytes Block Size 64 Bytes -
Size .|| 8-way | 4-way | 2-way | 1-way || 8-way | 4-way | 2-way | 1-way [[ 8-way | 4-way | 2-way | l-way
1K' || 0210:{.0219 | 0.239 | 0288 | 0.162 | 0.170 | 0.188 | 0.244 || 0.137 '| 0.144 | 0.162"| 0229
2K [1.0.170 | 0179 | 0.197 | 0.240 [| 0.124 | 0.130 | 0.146 | 0.188 || 0.098 | 0.104 | 0.118 | 0.163
4K " 0.120 | 0.126 | 0.140 | 0.172 || 0.082 | 0.087 | 0.097 | 0.126 { 0.059 | 0.063 | 0.072°] 0.099
8K || 0.080 | 0.084 { 0.093 | 0.116 [} 0.050 | 0.053 | 0059 | 0.077 || 0033 | 0.035 | 0.040 | 0.055
16K | 0.060 | 0063 | 0.069 | 0.088 || 0.036 | 0.038 | 0.042 | 0.055.| 0.023 |.0.025 1.0.028 | 0.038
32K || 0040 | 0042 | 0046 | 0059 || 0024 | 0025 | 0028 | 0037 | 0.014 [ 0015 | 0017 | 0.023
) Deslgn Target Miss Ratlos for Instruction Caches
Cache - Block Size 16 Bytes Block Size 32 Bytes Block Size 64 Bytes
i E - - E E - - - E 4- 2- 1-
ISé | 8-way | 4-way | 2-way | 1-way || 8-way | 4-way | 2-way [ 1-way || 8-way | 4-way way way
1K |f 0200 | 0211 | 0234 | 0271 | 0134 | 0.140 | 0.155 | 0.179 [} 0.098 { 0.104 [ 0.115-{-0.133
2K || 0150 [ 0.159 | 0179 | 0210 || 0098 | 0103 | 0.117 | 0.138 || 0068 | 0072 | 0.082 }-0.097
4K || 0100 | 0.106 | 0.120 | 0.143 || 0.063 | 0.067 | 0.076 | 0.091 jf 0.043 | 0.046. | 0.053 | 0.063 )
8K || 0.060 | 0.064 | 0072 | 0.089 || 0.037 | 0.039 | 0.045:| 0.056 [| 0.023 | 0.025 | 0.028 | 0.035
16K {| 0.050 | 0.053 | 0.060 | 0.076 || 0029 | 0.031 | 0.035 | 0045 || 0.018.| 0019 | 0022 0.029
32K || 0030 | 0.032 | 0036 | 0.046 || 0.017 | 0018 [ 0021 | 0027 || 0.010 | 0011 - 0.012.§ 0.016
Design Target Miss Ratios for Data Caches ¢ ; et
Cache Block Size 16 Bytes Block Size 32 Bytes - Block Size 64 Bytes .
Size || 8-way [ 4-way | 2-way | 1-way || 8-way | 4-way | 2-way | l-way || 8-way | 4-way | 2-way | l-way
1K || 0160 | 0.170 | 0.192 | 0.244 | 0.138 | 0.146 | 0.166 | 0.216 || 0.140:| 0.150 | 0.170 |.0.227
2K [ 0420 [ 0.127-] 0.143 | 0.183 | 0.094 | 0.101 |.0.114 |.0.149 || 0.083 | 0.08% | 0.102 ‘| 0.138 o
4K’ || 0100 | 0.106 | 0.117 | 0.148 || 0.070 | 0.075 | 0.084 | 0.109 || 0.054 | 0.058 | 0.067.| 0.090
8K Il 0080 | 0.084 | 0092 | 0.116 | 0.053 | 0056 { 0.062 | 0.081 | 0.039 | 0.042:| 0.047 [ 0.064 | .~
"16K || 0.060 | 0062 | 0.068 | 0.084 | 0039 | 0041 | 0045 | 0058 [ 0026 | 0.028 | 0.031 | 0.042
32K | 0.040 | 0041 | 0045 | 0055 || 0.025 | 0.026 | 0028 | 0.037 || 0017 | 0.018 | 0.020 | 0.027

associative caches. Our algorithm is a' generalization of an
earlier algorithm [19], [34]. We find all-associativity simula-
tion is tremendously effective, allowing dozens of caches 'to
be evaluated in time that is within a small constant factor of
the time needed to 51mulate one cache with. wide associativity.

~ Our empirical examination of assoc1at1v1ty and miss ratio
prowdes data and insight into how miss ratio.is affected by
changes in associativity. In partlcular :

e We show how to divide cache misses into conﬂlct ca-
pacity, and compulsory misses, using only average miss ra-
tios from alternative caches. Increasing associativity but not
cache'size can only reduce conflict misses. Increasing cache
size but not associativity increases the number of sets, and
therefore may decrease conflict and capacity misses. Compul-
sory misses cannot be reduced w1thout mcreasmg block size
or prefetching.

o By applying a model from [26] to a w1de varlety of
caches, we show that the difference between set-associative
and fully-associative miss ratios (the rate of conflict misses)
can be predicted by assuming blocks map to sets uniformly
and independently, resulting in too many active blocks map-
ping to a fraction of the sets.

e We find empirically that miss ratio spread the relative -
change in miss ratio caused by reducing associativity, -is rel-.
atively invariant for caches of significantly different size and
miss ratio. Our data show that reducing associativity from -
eight-way to four-way, from four-way to two-way, and from
two-way to direct-mapped causes relative miss ratio increases
of about'5, 10, and 30 percent, respectively. We also use miss -
ratio spreads to provide design target miss ratios for caches
with llmlted associativity.
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