IEEE TRANSACTIONS ON COMPUTERS, VOL. 57, NO. 4, APRIL 2008

433

Counter-Based Cache Replacement
and Bypassing Algorithms

Mazen Kharbutli, Member, IEEE, and Yan Solihin, Member, IEEE

Abstract—Recent studies have shown that, in highly associative caches, the performance gap between the Least Recently Used
(LRU) and the theoretical optimal replacement algorithms is large, motivating the design of alternative replacement algorithms to
improve cache performance. In LRU replacement, a line, after its last use, remains in the cache for a long time until it becomes the LRU
line. Such deadlines unnecessarily reduce the cache capacity available for other lines. In addition, in multilevel caches, temporal reuse
patterns are often inverted, showing in the L1 cache but, due to the filtering effect of the L1 cache, not showing in the L2 cache. At the
L2, these lines appear to be brought in the cache but are never reaccessed until they are replaced. These lines unnecessarily pollute
the L2 cache. This paper proposes a new counter-based approach to deal with the above problems. For the former problem, we predict
lines that have become dead and replace them early from the L2 cache. For the latter problem, we identify never-reaccessed lines,
bypass the L2 cache, and place them directly in the L1 cache. Both techniques are achieved through a single counter-based
mechanism. In our approach, each line in the L2 cache is augmented with an event counter that is incremented when an event of
interest such as certain cache accesses occurs. When the counter reaches a threshold, the line “expires” and becomes replaceable.
Each line’s threshold is unique and is dynamically learned. We propose and evaluate two new replacement algorithms: Access Interval
Predictor (AIP) and Live-time Predictor (LvP). AIP and LvP speed up 10 capacity-constrained SPEC2000 benchmarks by up to

48 percent and 15 percent on average (7 percent on average for the whole 21 Spec2000 benchmarks). Cache bypassing further
reduces L2 cache pollution and improves the average speedups to 17 percent (8 percent for the whole 21 Spec2000 benchmarks).

Index Terms—Caches, counter-based algorithms, cache replacement algorithms, cache bypassing, cache misses.

1 INTRODUCTION

RECENT studies have shown that, in highly associative
caches such as the L2 cache, the performance gap
between the Least Recently Used (LRU) and Belady’s
theoretical optimal replacement algorithms is large. For
example, the number of cache misses using LRU can be up
to 197 percent higher than when using the optimal
replacement algorithm [1], [2]. This suggests that alternative
replacement algorithms may be able to improve cache
performance significantly over LRU.

The LRU replacement algorithm tries to accommodate
temporal locality by keeping recently used lines away from
replacement in the hope that, when they are reused, they
will still be in the cache. Unfortunately, two things work
against LRU replacement. For one thing, each cache line
will eventually be replaced after its last use. However, even
after its last use, a line is not immediately replaced because
it remains in the cache until it becomes the LRU line. Such
dead lines unnecessarily reduce the cache capacity available
for other lines. The dead time, that is, time between when a
line becomes dead and when it is eventually replaced,

o M. Kharbutli is with the Department of Computer Engineering, Jordan
University of Science and Technology, Irbid, Jordan 22110.
E-mail: kharbutli@just.edu.jo.

o Y. Solihin is with the Department of Electrical and Computer Engineering,
North Carolina State University, Campus Box 7256, Raleigh, NC 27695-
7256. E-mail: solihin@ncsu.edu.

Manuscript received 11 July 2006, revised 12 Mar. 2007; accepted 26 July
2007; published online 6 Sept. 2007.

Recommended for acceptance by A. Gonzalez.

For information on obtaining reprints of this article, please send e-mail to:
tc@computer.org, and reference IEEECS Log Number TC-0267-0706.
Digital Object Identifier no. 10.1109/TC.2007.70816.

0018-9340/08/$25.00 © 2008 IEEE

becomes worse with larger cache associativities since it
takes longer for a line that is recently last-used to travel
down the LRU stack to become the LRU line. Hence,
although a larger cache associativity improves cache
performance in general, the performance gap between
LRU and the optimal replacement algorithm also increases.
Clearly, replacing dead lines promptly after their last use
would improve cache performance by making the wasted
capacity available for other cache lines that are not dead yet.
In order to achieve that, a dead line prediction technique is
needed to identify and replace dead lines early.

Another factor that works against LRU replacement is
that temporal locality may invert when there are multiple
levels of caches. There are many cache lines that exhibit
bursty temporal reuses. This is often due to spatial reuses of
different bytes of the same cache line, which tend to occur
in burst. Current caches typically have large cache lines (64
or 128 bytes), amplifying this bursty reuse pattern. With a
single-level cache, these bursty temporal reuses would be
well accommodated by the LRU replacement algorithm.
However, in multilevel caches, this bursty pattern often
manifests at the L1 cache only and is filtered by the
L1 cache. To the L2 cache, the line does not appear to have
temporal reuse since it is brought into the cache but is not
used until it is replaced. Hence, the lines are immediately
dead after they are brought into the L2 cache. Such never-
reaccessed lines unnecessarily waste the L2 cache capacity.
Ironically, lines with less frequent temporal reuses cannot
be filtered by a small L1 cache and such reuses will show up
at the L2 cache. Note that, for never-reaccessed lines,
immediately replacing them after they are brought into the
L2 cache using a dead line prediction technique would only

Published by the IEEE Computer Society

434

be partially beneficial because the lines already cause cache
pollution due to replacing other lines that may still be
needed by the processor. A better approach is to identify
them and avoid placing them in the L2 cache in the first
place using a technique often referred to as cache bypassing.

The main contribution of this paper is that we show that
a simple counter-based approach can be used to identify
dead lines and replace them early and that the same
approach can be simultaneously used for identifying and
bypassing never-reaccessed lines. Our mechanism relies on
counters that keep track of the number of relevant cache
events in a cache line’s history and use that to predict the
cache line’s future behavior. We call our approach counter-
based cache replacement and counter-based cache bypassing. In
our approach, each L2 cache line is augmented with an
event counter that is incremented when an event of interest
(such as certain cache accesses) occurs. For replacement
decisions, when the counter reaches a threshold, the line
expires and immediately becomes replaceable. We design
and evaluate two alternative algorithms, which differ by the
type of events counted and the intervals in which they are
counted: The Access Interval Predictor (AIP) counts the
number of accesses to a set in an interval between two
consecutive accesses to a particular cache line, whereas the
Live-time Predictor (LvP) records the number of accesses to a
cache line in an interval in which the line resides
continuously in the cache. For bypassing decisions, the
same event counters can identify never-reaccessed lines
and, in the future, they can be directly placed in the
L1 cache without polluting the L2 cache.

Through a detailed simulation evaluation, AIP and LvP
speed up 10 out of 21 Spec2000 applications that we tested
by up to 48 percent or 15 percent on average (7 percent on
average for the whole 21 Spec2000 applications) without
slowing down the remaining 11 applications by more than
1 percent. Both AIP and LvP outperform other dead line
predictors in terms of coverage (fraction of replacements
initiated by the predictors), accuracy (fraction of replace-
ments that agree with the theoretical OPT), and IPC
improvement using comparable hardware costs. Further-
more, bypassing can be added to AIP and LvP without
additional hardware, which further improves the average
speedup to 17 percent (8 percent for the whole 21 applica-
tions). Both AIP and LvP only incur small overheads: Each
cache line is augmented with 21 bits to store prediction
information, equivalent to 4.1 percent storage overhead for
a 64 byte line. In addition, a simple 40 Kbyte prediction
table is added between the L2 cache and its lower level
memory components. The prediction table is only accessed
on an L2 cache miss and, thus, its access is overlapped with
the L2 cache miss latency.

The rest of the paper is organized as follows: Section 2
discusses related work, Section 3 discusses our counter-based
replacement algorithms, and Section 4 discusses the cache
bypassing algorithm. Section 5 describes the evaluation
environment, while Section 6 discusses the experimental
results obtained. Finally, Section 7 concludes the paper.

IEEE TRANSACTIONS ON COMPUTERS, VOL. 57, NO. 4, APRIL 2008

2 RELATED WORK

Dead-block replacement. To improve the cache replace-
ment decisions, ideally, a line is replaced as soon as it has
been last used. Previously, two approaches for dead line
prediction have been proposed. In sequence-based prediction,
a predictor records and identifies the sequences of memory
events, such as the PC/addresses of the last few accesses,
leading up to the last use of a line [3], [2]. In time-based
prediction, a cache line’s timing, measured in the number of
clock cycles (or multiples of it), is used to predict when a
line’s last use has likely occurred [4], [5], [6], [7]. Note that
no cache replacement policy has been proposed based on
time-based prediction. Time-based prediction has only been
evaluated in the context of cache leakage power reduction
[4], [5], [7] and prefetching [8]. However, logically, it is
applicable for aiding cache replacement decisions and,
hence, it is compared against our techniques in this paper.
Our counter-based approach is qualitatively compared to
the sequence-based approach in Section 3.4 and to the time-
based approach in Section 3.5. A quantitative comparison
between the three approaches is in Section 6.

Takagi and Hiraki [9] recently proposed a counter-based
replacement algorithm called IGDR which collects access
interval distributions. In their algorithm, the virtual time
counter is incremented on each cache access, regardless of
the cache sets, thus requiring large counters. Moreover, the
algorithm is costly to implement in hardware: Several per-
line fields need to be updated, compared, and incremented
on every access. In addition, the algorithm requires a large
number of multiplications and divisions to regularly update
tables. On the other hand, our predictors only require a 4-bit
counter per cache line and only perform increment
operations to the counter of the accessed line (LvP) or the
counters of the lines in the accessed set (AIP). AIP and LvP
only perform comparisons on a cache miss to identify dead
lines. Finally, IGDR divides cache lines into classes and
makes predictions based on a line’s class. In AIP and LvP,
each line’s behavior is unique. A quantitative comparison
with IGDR is provided in Section 6.

An alternative approach to early replacement of dead
lines relies on the compiler to make such decisions [10], [11].
However, compiler techniques are less applicable to
applications that have dynamic access pattern behavior or
ones that are hard to analyze at compile time.

Cost-sensitive replacement algorithms have been pro-
posed to reduce the cost of cache misses rather than miss
rates [12], [13]. Such algorithms predict and replace the
cache line that will have the lowest miss cost the next time it
is accessed, even if it is still useful. On the other hand, our
approach and dead-block predictors in general predict and
replace a dead line that will not be accessed again while in
the cache.

Finally, none of the dead-block prediction techniques
support cache bypassing, whereas our predictors can also
identify never-reaccessed lines and make bypassing deci-
sions for them to further improve cache performance
without extra hardware.

Cache bypassing. Several cache bypassing schemes have
been proposed in the past. They can be categorized into static
and dynamic approaches. Static approaches [14], [15] rely on

KHARBUTLI AND SOLIHIN: COUNTER-BASED CACHE REPLACEMENT AND BYPASSING ALGORITHMS 435

the profile-guided compiler to identify lines that should
bypass the cache. However, compiler-based approaches are
less applicable to applications that have dynamic access
pattern behavior or ones that are hard to analyze at compile
time due to the limitation of static analyses. In addition,
memory profiling results are often too input dependent to be
a reliable guide across multiple input sets [15].

Dynamic cache bypassing uses runtime behavior learn-
ing and prediction to identify bypassing opportunities. Our
cache bypassing scheme falls into this category. Dynamic
cache bypassing has been studied in [16], [17], [18], [19],
[20], [21], [22], [23], [24], [25]. In these studies, cache
bypassing decisions can be based on the program counter
(PC) of the load instruction that generates a cache access
[23], [22], [25] or on the memory address of the access [16],
[18], [19], [20], [21]. A PC-based approach works well if the
same memory address has a different locality behavior in
different code segments, whereas an address-based approach
works well if the same memory address has similar locality
behavior in different code segments. Our counter-based
algorithms use a hybrid PC and address information in
making bypassing decisions. The main distinguishing feature
of our bypassing techniques is that, while prior dynamic
cache bypassing schemes implement hardware support
specifically for bypassing, we show that our cache bypassing
techniques can utilize the same hardware used for counter-
based replacement algorithms. Hence, the extra performance
gain bypassing techniques provide comes for free.

Other related work. Peir et al. [26] use bloom filters
(probabilistic algorithms to quickly test membership in a
large set using hashing into an array of bits) to predict if a
load will hit in the cache or not and thus to make
scheduling decisions about its dependent instructions.
Keramidas et al. [27] use decaying bloom filters to select
which ways in the set to check to avoid checking all ways
and, thus, to save dynamic power. Cache hit/miss predic-
tion and way prediction techniques are largely orthogonal
to our work.

3 COUNTER-BASED DEAD-LINE PREDICTION AND
REPLACEMENT

In this section, we will give an overview of how counter-
based replacement algorithms work (Section 3.1), discuss
the implementation of the AIP algorithm (Section 3.2) and
the LvP algorithm (Section 3.3), qualitatively compare them
with the sequence-based approach (Section 3.4) and the
time-based approach (Section 3.5), and, finally, discuss
some implementation issues (Section 3.6).

3.1 Overview

Fig. 1 illustrates the life cycle of a cache line A. Initially, a
cache line A is brought into the cache, either through a
demand fetch or by a prefetch. Although in the cache, A
may be accessed several times before it is replaced. We call
the time between the placement of A in the cache until it is
replaced the generation time. Generation time is divided into
the time from placement until last use (live time or LT) and
the time from the last use until replacement (dead time). In
the case where the cache line is never used after it is
brought into the cache (such as when a prefetched line is

Generation Time
=— Live Time (LT) Dead Time
Access Intervals (AI)
ATl \LAIZi AI3 Al4 AIS
A’scache A A A A As A expires A’s eviction

placement last access/use

Fig. 1. The life cycle of a cache line A using terms defined in [28].

not used), there will be no live time and the line would be
dead the instant it is placed in the cache. Finally, we refer to
the time between two consecutive uses of A as the access
interval (denoted as Al).

If the life cycle behavior, such as the live time or access
interval of a cache line, is predictable, dead line prediction
schemes can be devised to predict a cache line’s future
behavior. Three factors determine the design of such a
predictor. The first factor is the time interval that serves as
the basis of the prediction. Such an interval must allow
early identification of dead lines so that the full perfor-
mance benefit of replacing them early can be realized. The
second factor is the type of events counted for each cache line
in the chosen interval. The selection of the type of events to
be counted affects the storage size of the event counters and
affects the predictability of the intervals. The final factor is
the threshold selection. A threshold value is used to identify a
dead line whenever the line’s event count reaches it.
Obviously, threshold selection determines how aggressive
a predictor is in identifying dead lines.

We choose the access interval and live time as our time
intervals and call our predictors AIP and LvP, respectively.
We will show later that both the access interval and live
time predictors allow early identification of dead lines. In
terms of the type of events counted during the time interval
for a cache line, possible choices are accesses to the cache,
accesses to the set that has the line or accesses to the line
itself. For AIP, a reasonable choice would be to count the
number of accesses to the set that has the line. Counting the
number of accesses to the cache (regardless of the sets)
would be a poor choice due to requiring large counters to
count possibly many accesses during a line’s access interval,
not to mention that accesses to other sets are a noise since
they do not affect the line’s live time or dead time. For LvP,
a reasonable choice of event to count is the number of
accesses to the line itself during a single generation.
Counting the number of accesses to the cache or to the set
that has the line would require much larger and frequent
counting, which incurs a high storage overhead. With their
respective event types to count, we found that both AIP and
LvP only require four-bit counters per cache line to count
their respective events that occur in their respective time
intervals. Detailed observations will be elaborated in
Sections 3.2 and 3.3.

The final factor is threshold selection, which is to be
learned from the past behavior of a cache line. Assuming
there has been several access intervals and live times
collected, thresholds for future predictions can be set by
taking the statistical summary of past intervals. For
example, the average or the maximum of event counts
from past intervals could be used. We note, however, that

436

Access Interval and Dead Time Distribution

100

&9

@ 80 | -

70

@ 60

250

® 40

@30 |

g 7o 3 ¥ I

Q 10 -l

RO R IR 1 i §] ' Ry i
EZ352228888R8E88EEc288
E S 2 5 3 EE T ®=Q §_

[o s

Fig. 2. Access interval (left bar for each application) versus dead time
(right bar for each application) distribution, showing the average plus/
minus its standard deviation. The cache parameters follow those in
Table 4.

the penalty for replacing a line that is not dead yet is an
extra cache miss on that line, which is quite significant. It is
hard to justify trading off an extra cache miss for a slight
increase in cache capacity. Hence, rather than using the
average, we conservatively set the thresholds as the
maximum of event counts in past intervals. For example,
in AIP, the threshold is the maximum of all access intervals
in the prior and current generations.

In the following sections, we will describe AIP and LvP
in greater details.

3.2 AIP Algorithm Design and Implementation
Recall from previous discussion that, for each cache line,
AIP works by counting the number of accesses to the set
that has the line during the line’s current access interval and
identifies it as dead when the event count reaches the
threshold. For AIP to reap the benefit of early replacement
of dead lines, its access interval threshold value must be
considerably smaller than its dead time. A previous study
on L1 caches has shown that, indeed, access intervals of a
line are typically a lot smaller than its dead time [8]. Our
own experiments on L2 caches largely confirm the finding;:
The difference in a line’s access interval duration and its
dead time is often one or more orders of magnitudes
(Fig. 2). This means that waiting for a typical access interval
to elapse before concluding a line is dead will still allow the
line to be replaced much sooner compared to when the line
is replaced by LRU replacement.

3.2.1 Prediction Structures

Fig. 3 shows prediction structures used by AIP. Several fields
are added to each L2 cache line in order to keep a count of
events and its threshold value, while a separate prediction table
is added between the L2 cache and its lower memory
hierarchy components to keep the history of threshold values
for lines that are not cached. The first field, hashedPC, is used
to index a row in the prediction table when a line is replaced
from the cache but has no role in counter bookkeeping. The
size of hashedPC depends on the number of rows the
prediction table has and, in our case, it is 8 bits. hashedPC is
obtained by XOR-ing all 8-bit parts of the PC of the instruction
that misses on the line. The second field is the event counter
(C), which is incremented each time the set that has the line is
accessed, regardless of whether the access was a hit or miss.
The third and fourth fields are the counter thresholds for the

IEEE TRANSACTIONS ON COMPUTERS, VOL. 57, NO. 4, APRIL 2008

Prediction Table
256x256 Entries

. —
o
MaxCoreq |

AN o
M N \\A\\ 4 1 (bits) E
*2 Prediction Table Entry -

©
o
past |

Hashed PC

maxGoe | maxC

8 4 4 4 1 7
(bits) .-~
______ Additional Fields per Cache Line .-~

K

Fig. 3. Storage organization and overhead of AlP.

time intervals in the most recent generation (maxCjpqs) and in
the current generation (maxCpresent). The fifth field is a single
confidence bit (conf) that, if set, indicates that the line can
expire and be considered for replacement. If it is not set, the
line is not considered for replacement even if its threshold has
been reached. Finally, to index a column in the prediction
table, the line’s block address is hashed by XOR-ing all 8-bit
parts of it. For instruction lines, the block address is
considered to be the PC.

The sizes of the counter and thresholds are determined
based on profiling of likely counter values. In the profiling,
we use infinite counter sizes and prediction table size and
measure how many counters have their threshold values
exceeding the value of 15 in the prediction table. A
threshold value is measured as the maximum access
interval in a single generation. Table 1 shows the result of

TABLE 1
Profile of Access Interval Counter Threshold Values
in the Counter Prediction Tables

([App. [Avg. [>15 [=last ||
ammp 0.25 0.19% | 97.6%
applu 0.11 0.00% | 94.3%
apsi 1.99 2.96% | 94.8%
art 0.00 0.00% | 99.9%
bzip2 3.29 4.84% | 50.8%
crafty 154.07 | 37.58% | 14.5%
equake 0.26 026% | 94.6%
gap 0.02 0.01% | 91.0%
gcc 0.08 0.13% | 99.5%
gzip 0.55 0.46% | 86.7%
mcf 0.51 0.28% | 94.1%
mesa 2.95 0.92% | 81.1%
mgrid 0.43 0.04% | 99.5%
parser 8.62 14.99% | 38.9%
perlbmk 434 2.13% | 76.6%
swim 1.19 0.02% | 88.8%
twolf 3.64 427% | 39.3%
vortex 6.05 4.85% | 55.8%
vpr 5.44 9.96% | 36.2%
wupwise 0.46 0.00% | 51.4%

The cache parameters follow those in Table 4.

KHARBUTLI AND SOLIHIN: COUNTER-BASED CACHE REPLACEMENT AND BYPASSING ALGORITHMS 437

the profiling. During profiling, counter threshold values are
simply recorded but are not used for cache replacement
decisions. The table shows that the average counter thresh-
old values are much smaller than the maximum value that
can be stored using a 4-bit counter. Furthermore, fewer than
5 percent of counter threshold values are larger than 15,
except for three applications. Therefore, using 4-bit saturat-
ing counters for both the event counter and thresholds is
sufficient for most applications. With 4-bit counters, the
storage overhead per cache line is 3 x 4 + 8 + 1 = 21 bits,
quite reasonable compared to a typical L2 cache line size of
64 or 128 bytes. Finally, the table shows that the maximum
counter values used as threshold values show repetitive
patterns across generations. In all but seven applications,
the threshold value discovered in the current generation is
the same as the threshold value discovered in the prior
generation more than 70 percent of the time. As described
later, we will exploit this observation for deciding the
confidence of the predictor.

The prediction table, located between the L2 cache and
main memory, stores the 4-bit counter threshold values for
lines that are not cached. The prediction table is a direct-
mapped tagless table organized as a 256 x 256 two-
dimensional matrix structure, with its rows indexed by
the hashedPC and its columns indexed by an 8-bit hashed
line address as described earlier. The PC used is the PC of
the instruction that misses on the line causing it to be
brought into the cache. It is used because the access
behavior of a cache line is often correlated with the code
section from where the line is accessed. The total table size
is 256 x 256 x (4 + 1) bits = 40 Kbytes, also very reasonable
compared to typical L2 cache sizes ranging from a half to a
few megabytes. The prediction table is used to store
threshold information of lines that are not cached and also
to restore threshold information for lines that are brought
into the cache. Hence, it is only accessed during a cache
miss and its latency can be overlapped with the cache miss
latency.

3.2.2 Algorithm Details

The AIP algorithm implementation is shown in Fig. 4. On a
cache access to a line z in a set, the event counters of all lines
in the set are incremented, including z’s own counter
(Step 1). If z is found in the cache, its counter value now
represents a completed access interval. If «’s counter value
is larger than the maximum value in the current generation
(x.maxCresent), it becomes the new maximum value, then is
reset to 0 so that it can measure the next access interval
(Step 2). Therefore, in a single generation, over time,
2.maxChpresent May keep increasing as new access intervals
with larger values are discovered.

If, on the other hand, « is not found in the cache (Step 3),
a victim line from the set needs to be selected for
replacement. To find the victim, all lines in the set are
checked for expiration. A line b is said to have expired if its
counter b.C' is larger than the maximum values in the
current generation (b.maxCpesent) and in the prior genera-
tion (b.maxCps) and its confidence bit (b.conf) is “1”
(Step 3a). The reason why b.C is not only compared with
b.maxChresent is because the current maximum access
interval may not have been fully discovered yet, so

On an access to line x in set s:
1. Increment the event counter of each line b in set s:
b.C =b.C+1;
2. If the access is a hit, reset 2’s counter after recording the new
threshold maximum:
2.mazCpresent = max(x.C, £.maxCpresent);

z.C = 0;
3. If the access is a miss,
3a. Identify all lines in set s that have expired.

A line b has expired if
b.C > bomaxCpresent, b.C > b.maxCpast and
b.conf == 1.
3b. Find a replacement line y :
if there is at least one expired line in the set
y is chosen randomly from among the expired lines;
else y = the LRU line;
3c. Update the prediction table by y’s information:
Index the table using y.hashedPC and y’s line address
y"rnamcstored = y~7nal'cp'resent;
if(y. maxCpresent == y.maxCpast)
y.confstored = 1;
else y.confsioreq = 0.
3d. Place line z in the cache:
Index the prediction table using x.hashed PC' and
z’s line address. z.hashedPC is obtained by performing
8-bit XOR to the instruction PC that causes the miss to x
z.C = z.maxCpresent = 0;
z.maxCpast = .maxCstored;
z.conf = x.confstoreds

Fig. 4. AIP algorithm implementation.

b.maxCp.s provides a better guidance. Note that, if one of
b.maxChresent OF b.maxC,y is saturated, then the counter
can never exceed that value, which means the line cannot
expire. This is a design trade-off in which we favor small
4-bit counters at the expense of a slight reduction in
prediction coverage. Recall that Table 1 shows that there are
only fewer than 5 percent access interval thresholds that
cannot be represented with 4-bit counters in most applica-
tions. Moreover, our experiments with larger counters do
not produce noticeable extra performance compared to
using 4-bit counters, further justifying the trade-off. Finally,
conf serves to prevent mispredictions when the behavior of
a line is unstable, such as when it is transitioning from one
behavior phase to another. conf is set when a stable phase,
defined as a single threshold value repeated over two
generations, is detected.

After expired lines have been identified, a line y among
them is chosen for replacement (Step 3b). If there are several
expired lines, one of them is randomly selected for
replacement. If no line has expired, the LRU line is selected
for replacement.

When y is replaced, its counter information updates an
entry in the prediction table (Step 3c). If the current
maximum y.mazCpresens is equal to the prior generation
maximum counter (y.mazCpe), then a stable phase in
which threshold values are likely to be repeated has been
found. Thus, the confidence bit in the table (y.confsored) is
set. Otherwise, it is reset to 0. It is possible for multiple lines
to hash to the same prediction table entry, potentially
causing aliasing problems in the confidence bit and thresh-
old value. However, in practice, we found this effect to be
negligible, in part because the table indexing function is
quite randomized due to utilizing both the hashedPC and
the line address to index the table, so consecutive PCs or
addresses are unlikely to fall into the same entry. Moreover,

438

MRU LRU

Tag | A| B | D|E F|G H T

C 0 1 3 4 7 8 11 15
maxCpresent 3 1 1 2 5 4 5 10
mazrCpast 3 1 2 8 5 4 15 | 15

conf 1 1 1 0 1 0 0 1

Expired? | N[N[Y|[N|[Y [N N N

(a)

MRU LRU

Tag | D| A | B E F|G H 1

C 0 1 2 5 8 9 12 15
maxcpresent 4 3 1 2 5 4 5 10
maxCpast 2 3 1 8 5 4 15 15

conf | 1 1 1 0 1 0 0 1
Expired? | N[N| Y |[NJ|]Y|N N N

(b)

MRU LRU

Tag J D|A]|B E G H 1
C 0 1 2 3 6 10 13 15
maxcprcsent 0 4 3 1 2 4 5 10
maxCpast 4 2 3 1 8 4 151 15
conf 1 1 1 1 0 0 0 1
Expired? [N | N | N |Y | N N N N

()

Fig. 5. Example of AIP implementation for an 8-way set. Lines are sorted
from the MRU line (left) to the LRU line (right). (a) The initial states,
(b) the states after an access (hit) to line D, and (c) the states after an
access (miss) to line J.

we found that, in many applications, different lines hashing
to the same prediction table entry exhibit similar behavior
(counter threshold values), reducing the learning time of the
algorithm. This is further evaluated in Section 6.4.

Finally, a newly fetched line z is placed in the cache
(Step 3d). Its event counter (z.C') and present maximum
counter (z.maxCpesent) are initialized to zero, whereas its
past maximum counter (z.mazCps) and confidence bit
(z.conf) are copied from the prediction table.

Note that cache latency critical paths are not affected
much. Steps 1 and 2 can be performed after a cache access is
completed. Steps 3a-d can be overlapped with the cache
miss latency. In addition, the AIP algorithm only involves
several 4-bit increment and compare operations, which
require modest hardware support.

To illustrate the working of the AIP algorithm, we show
an example in Fig. 5. The figure shows a set in an 8-way set
associative cache. The lines are sorted from the MRU line
(left) to the LRU line (right). The figure shows the different
values of C, maxzCpresent, maxCpyst, and conf for each line.
Fig. 5a shows the initial state with two expired lines (D and
F) because their confidence bits are set and their C' values
are larger than their maximum counters (maxCpresent and
maxCpqs). Note that line G has not expired because G.con f
is zero. Fig. 5b shows the set after a cache access (hit) to line
D. Line D now becomes the MRU line, the counter values
for all the lines in the set are incremented, except for ones
that have already saturated their 4-bit counters (line I).
Updating the event counter values results in B becoming a
new expired line. Since an access interval has just been
completed for D, D.maxzCpresent is updated with the value of
D.C (that is, 4) and, then, D.C is reset to 0. Interestingly,
line D is no longer expired since it is reaccessed. Finally, let
us assume an access to line J results in a cache miss (Fig. 5¢).
In this case, because both lines B and F have expired, we

IEEE TRANSACTIONS ON COMPUTERS, VOL. 57, NO. 4, APRIL 2008

TABLE 2
Profile of the Counter Threshold Values
in the Counter Prediction Tables for LvP

([App. [Avg. [>I5 [=last ||
ammp 0.21 0.16% | 97.8%
applu 0.23 | 0.00% | 97.9%
apsi 246 | 0.86% | 95.2%
art 0.00 | 0.00% | 99.9%
bzip2 217 | 2.13% | 54.7%
crafty 33.08 | 8.21% | 24.1%
equake 0.21 0.10% | 94.8%
gap 0.05 | 0.01% | 91.8%
gce 042 | 0.04% | 99.4%
gzip 027 | 0.15% | 87.4%
mcf 026 | 0.38% | 95.4%
mesa 6.99 0.64% | 89.2%
mgrid 0.28 | 0.00% | 99.3%
parser 445 4.03% | 43.8%
perlbmk 097 | 0.92% | 78.0%
swim 056 | 0.17% | 87.4%
twolf 1.76 | 2.00% | 43.6%
vortex 11.07 | 1.70% | 58.6%
vpr 2.39 | 2.00% | 40.6%
wupwise 0.21 0.00% | 54.1%

The cache parameters follow those in Table 4.

randomly choose a line to replace from among them (F in
the example). The values J.maxCpesent and J.C are
initialized to zero, whereas the values J.maxzCp.y and
J.conf are initialized from the prediction table.

3.3 LvP Algorithm Design and Implementation
Recall that LvP works by counting the number of accesses
to a cache line starting from when it was placed in the
cache. If the count reaches a threshold, it is considered dead
and becomes replaceable. For the LvP algorithm to work
well, the live times have to be predictable across genera-
tions. Fortunately, this is the case. Table 2 shows in the last
column how often the live time of a line from the previous
generation is repeated in the current generation. With the
exception of seven applications (bzip2, crafty, parser, twolf,
vortex, vpr, and wupwise), in more than 70 percent of the
cases, the live times are repeated. In addition, the table
points out that the average live times are small for all
applications except for crafty and vortex and that the event
counts during live times hardly ever become larger than 15.
Hence, as with AIP, we only need 4-bit counters to count
events and to store threshold values.

3.3.1 Prediction Structures

The LvP algorithm is implemented in a similar way as the
AIP algorithm in Section 3.2. However, there are several
differences that make LvP implementation simpler. First,
LvP counts events during the entire live time of a line. Thus,
maxChpresent is Not needed, reducing the storage overhead
per cache line to 2 x 4 + 8 4+ 1 = 17 bits. Furthermore, since,
on each cache access, only the accessed line’s counter is
incremented, LvP requires a smaller number of increment
operations. Although both AIP and LvP’s increment
operations can be performed off the critical path of cache
access latency, LvP is more power efficient due to much
fewer increment operations.

KHARBUTLI AND SOLIHIN: COUNTER-BASED CACHE REPLACEMENT AND BYPASSING ALGORITHMS 439

On an access to line x in set s:
1. If the access is a hit:

z.C=z.C+1
2. If the access is a miss,
2a. Identify all lines in set s that have expired.

A line b has expired if
b.C >=b.maxCpast and b.conf == 1.
2b. Same as Step 3b in AIP
2c. Update the prediction table by y’s information:
Index the table using y.hashedPC and y’s line address
y.mazCsiored = Y.C;
if(y-maxcpast = "JC)
y.con fstoreda = 1;
else y.con fstoreqd = 0.
2d. Place line « in the cache:
Index the prediction table using xz.hashed PC and
x’s line address. x.hashedPC' is obtained by performing
8-bit XOR to the instruction PC that causes the miss to x
z.C =0
z.maxCpast = £.MaxCsiored;
z.conf = x.confsioreds;

Fig. 6. LvP algorithm implementation.

3.3.2 Algorithm Details

Fig. 6 shows the LvP algorithm in detail. Since LvP keeps
track of the number of accesses to a line during its
generation time, on a cache access, we only increment the
line’s own counter (Step 1). If the access is a cache miss,
expired lines are identified if their event counters are larger
than or equal to their thresholds and their confidence bits
are set (Step 2a). Then, similarly to AIP, a line among the
expired ones is randomly selected to be replaced (Step 2b).
Then, the replaced line updates the prediction table
(Step 2c). Finally, the new line is placed in the cache and
its fields initialized (Step 2d).

To illustrate the working of the LvP algorithm, we show
an example in Fig. 7. The figure shows a set in an 8-way set
associative cache. The lines are sorted from the MRU line
(left) to the LRU line (right). In Fig. 7a, there are two expired
lines (B and F): Their counter values are equal to or larger
than their thresholds (maxzCp.s) and their confidence bits
are set. After a cache hit to line D in Fig. 7b, D becomes the
MRU line and its event counter is incremented, which
causes line D to expire. After an access to line J results in a
cache miss in Fig. 7c, the selected line for replacement is
randomly chosen to be F.

3.4 Comparison with Sequence-Based
Replacement Algorithms

Sequence-based replacement algorithms record and learn
sequences of memory events that lead up to the last use of a
line. An event signature is often the PC and/or address of a
memory access, whereas a sequence signature consists of a
combination of past event signatures. Compared to se-
quence-based replacement algorithms, counter-based repla-
cement algorithms are more storage efficient. Although it is
not easy to encode an event signature in only four bits, we
have shown that the counter of each line in our approach
only needs to be 4 bits in size. In addition, in sequence-
based algorithms, the longer a sequence is, the more storage
is needed for keeping the sequence signature. With the
counter-based approach, the entire past history of a line can
be compactly summarized in a single threshold value,
which only needs to be 4 bits in size. Consequently, for

MRU LRU
Tag | AJ]B|DJEJF]G I
c |0 1 1 4 7 8 11 14
maxCpast 3 1 2 8 5 4 15 15
conf |1 1 IJofJ1]0] O 1
Expired? | N[Y| N[NJ[JY | N]J| N N
(@)
MRU LRU
Tag [D A]JBJEJF]G I
cl2lo] 147811] 14
maxCpast 2 3 1 8 5 4 15 15
conf [1 1 I]0 I]0 0 1
Expired? [Y| N|[Y [N|Y [N[N N
(b)
MRU LRU
Tag [TJJD]|A]JBJE]JG]|H I
clofj2]o0]T[4]8]I1] 14
maxCpast 4 2 3 1 8 4 15 15
conf [1 1 I I 07O 0 1
Expired? [N| Y| N|J|Y|[N|N| N | N

©

Fig. 7. Example of LvP implementation for an 8-way set. The figure
shows (a) initial states, (b) the states after an access (hit) to line D, and
(c) the states after an access (miss) to line J.

sequence-based algorithms to work best [3], [2], their
authors use an on-chip prediction table that is several
Mbytes in size. In contrast, our counter-based algorithms
require only a 40 Kbytes prediction table and 21 or 17 bits
per cache line overhead to store counters and threshold
values, and larger structures do not yield noticeable extra
performance improvement (Section 6.4).

Another significant difference is that sequence-based
algorithms are often too aggressive. As soon as an event
sequence pattern is identified, a line is identified as dead. In
our counter-based approach, the choice of how aggressive
the prediction is can be adjusted. For example, we have
chosen to use a conservative prediction in which we take
the maximum value of the access intervals or live times of a
line. Consequently, although there is a slight increase in
cases in which dead lines are not identified promptly, a
cache line is seldom prematurely replaced. This choice
contributes to the robustness of our AIP and LvP algo-
rithms, which do not slow down any applications by more
than 1 percent compared to LRU.

Finally, we will show in our evaluation results (Sec-
tion 6.1) that, even with infinite prediction table sizes,
compared to sequence-based algorithms, our counter-based
algorithms achieve a higher coverage (79 percent versus
72 percent) and fewer premature replacements (4 percent
versus 12 percent).

3.5 Comparison with the Time-Based Approach

As mentioned in Section 2, time-based mechanisms have
only been evaluated for power optimizations [4], [5], [6], [7].
However, the basic idea in time-based mechanisms that a
cache line’s access interval or live time can be measured in
time units (clock cycles) rather than event counts logically
implies that they can be used as replacement algorithms.
Unfortunately, time-based replacement is difficult to im-
plement due to several factors.

440

First, the number of cache misses and replacements are
more closely correlated with the number of cache accesses
than with the number of clock cycles. For a time-based
approach to work well, the timer has to accommodate cache
timing variations of a wide range of applications. The time
step needs to be fine grained enough to accommodate
applications with frequent cache accesses (per unit time),
but also needs to be coarse grained enough to accommodate
applications with a low L2 cache access frequency. If the time
step is too coarse, it cannot distinguish between an access
interval with zero or with few accesses. On the other hand, if
the time step is too fine, large timer storage is needed.

In addition, a time-based approach is harder to imple-
ment in real processors because the processor clock
frequency frequently changes due to power/energy opti-
mizations. Such changes do not change the time intervals
that need to be measured in linear proportion. Hence, to
work well in real implementations, a time-based approach
will have to be made aware of many other system settings.

Finally, a time-based approach may not accurately
identify never-reaccessed lines, which is essential for
performing cache bypassing.

3.6 Other Implementation Issues

Counter bookkeeping implementation. To keep the hard-
ware for incrementing counters very simple, we use a single
4-bit increment unit and a single compare unit per set for
both AIP and LvP. In AIP, since all counters in a set are
incremented on each access to any line in the set, we
perform the increment operations sequentially. We note
that, because the average time between two successive
accesses to a cache set is often larger than 2,000 cycles,
sequentially incrementing a set’s counters results in
negligible performance impact. Moreover, since counters
need to be read and compared only when a cache
replacement needs to be made on a cache miss, they can
be performed in parallel with the cache miss latency.
However, in terms of the number of increment operations, it
is clear that LvP is a lot more power efficient than AIP.

Applicability to SMT/CMP systems. Since L2 cache
sharing in SMT and CMP systems increases cache pressure
and capacity misses for each thread that shares the cache, we
believe that our counter-based replacement is even more
applicable. However, we leave such a study for future work.

LRU and the underlying replacement algorithm.
Although AIP and LvP divide cache lines into groups of
expired and nonexpired lines, the selection of the victim
line from each group follows the underlying replacement
algorithm. As a result, AIP and LvP can be implemented
over any cache replacement algorithms. For example, with
random replacement, the replacement policy first chooses a
victim line randomly from the group of expired lines. If no
line has expired, then it chooses a victim line from the
group of nonexpired lines. In our previous discussion and
experiments, we assumed the underlying algorithm to be
LRU, but note that there are no major reasons why other
replacement policies cannot be used.

Prediction table initialization and resetting. When a
new thread (application) starts running on the processor,
the prediction table is reset by initializing all threshold
values in it to 15 and all confidence bits to 0. Threshold

IEEE TRANSACTIONS ON COMPUTERS, VOL. 57, NO. 4, APRIL 2008

Percentage of Evicted L2 Cache Lines Not

106% Re-accessed after their Cache Placement
0

90%
80%
70%
60%
50%
40%
30%
20%
10%
0%

ammp
applu
apsi

art
bzip2
crafty
eon
equake
gap

gce
9zip
mcf
mesa
mgrid
parser
perlbmk
swim
twolf
vortex
vpr
wupwise
average

Fig. 8. Percentage of evicted L2 cache lines that were never reaccessed
after being brought into the cache. The cache parameters follow those in
Table 4.

values are not initialized to 0 to avoid misinterpreting a
zero-threshold value as the case when a line, in its previous
generation time, was not used after being brought into the
cache. As we will see in Section 4, such lines will bypass the
L2 cache the next time there is an attempt to bring them into
the cache. Furthermore, since new threshold values are
continuously being learned and recorded during runtime,
there is no need to reset the table during execution. On
context switches, we have a choice of whether to treat the
prediction table as a process context (so that it is saved and
restored) or simply reset it. Since our prediction table is
small, it does not take long to warm it up and, hence,
resetting it does not adversely impact prediction accuracy
by much. To test this, we evaluated resetting the prediction
table every 1 billion cycles and then every 100 million L2
accesses, but we only noticed negligible performance
changes in both cases.

4 COUNTER-BASED CACHE BYPASSING

In addition to improving cache performance through early
detection of dead lines, counter-based prediction can also be
used to identify opportunities for bypassing. There are many
cache lines that exhibit bursty temporal reuses. This is often
due to spatial reuses of different bytes of the same cache line
that tend to occur in bursts. Current caches typically have
large cache lines (64 or 128 bytes), amplifying this bursty
reuse pattern. With a single-level cache, this bursty temporal
reuse would be well accommodated by the LRU replacement
algorithm. However, in multilevel caches, this bursty pattern
often manifests only at the L1 cache and is filtered by the L1
cache. To the L2 cache, the line does not appear to have
temporal reuse since it is brought into the cache but is not
used until it is replaced. Hence, the lines are immediately
dead after they are brought into the L2 cache. Such never-
reaccessed lines unnecessarily waste the L2 cache capacity.
Fig. 8 shows the fraction of evicted L2 cache lines that
were never reaccessed after being brought into the cache. It
ranges from 21 percent to almost 100 percent (there are no
L2 cache evictions in the case of eon) and is above 70 percent
in most cases. Note that immediately replacing them after
they are brought into the L2 cache can be achieved with our
counter-based replacement algorithms; however, it would
only be partially beneficial because the lines already
displaced other lines that may not be dead yet. A better

KHARBUTLI AND SOLIHIN: COUNTER-BASED CACHE REPLACEMENT AND BYPASSING ALGORITHMS 441

approach is to identify them and avoid placing them in the
L2 cache in the first place using a technique referred to as
cache bypassing. To support bypassing, it is necessary to
relax the multilevel cache inclusion between the L1 and
L2 caches. The cache inclusion property guarantees that the
lines in an upper level cache are also stored in the lower
level caches. Many modern cache implementations, includ-
ing the AMD Opteron, no longer enforce the inclusion
between L1 and L2 caches [29]. Typically, the cost of
relaxing the inclusion property is in duplicating the L1 tags
so that the tags can be checked against coherence requests
without blocking the processor from accessing the L1 cache
[30]. Since L1 caches are typically small in size (8-64
Kbytes), duplicating the L1 cache tags would incur
negligible storage overhead.

Note that bypassing, if not performed conservatively,
may easily degrade performance. Since bypassed lines are
only placed in the L1 cache, if they are accidentally replaced
from the L1 cache, they need to be reloaded from the
memory (instead of from the L2 cache), incurring a higher
latency. Since the L1 cache is small and has a low
associativity, it is easy for a line to be replaced shortly after
it is placed. Therefore, our design principle is that
bypassing algorithms should not only identify never-reac-
cessed lines, but bypass them only if there is no spare capacity
in the L2 cache because, if there is spare capacity at the L2
cache, it would not hurt the performance to also place the
line in the L2 cache. Fortunately, our counter-based
replacement algorithms provide mechanisms to achieve
both objectives. First, both AIP and LvP already have the
ability to detect never-reaccessed lines. A never-reaccessed
line is detected when maxzCjeq = 0 and conf = 1, indicat-
ing that, in the previous two generations, the line was not
reaccessed while it resided in the L2 cache. Thus, it is quite
likely that, in the next generation, the line will exhibit the
same behavior. Second, spare capacity is detected when
there is at least one dead line available to replace from the
L2 cache, indicating that the processor no longer needs it,
and replacing it with the requested line will not impact
performance. In this case, bypassing is not performed, and
the line is placed in the L2 cache, as well as the L1 cache.
Note also that, in this case, a relearning opportunity is given
to the line in case its reuse behavior has changed. However,
if no spare capacity is detected (no expired line is found), all
of the lines in the set are live and are still needed by the
processor. In this case, bypassing is performed and the
requested line that is predicted to be never-reaccessed is
placed only in the L1 cache. Finally, when a modified line in
the L1 cache is written back to the L2 cache and the line is
not found in the L2 cache, the write back is forwarded to the
L2’s lower level memory hierarchy component.

In the case of write-through caches, the L1 cache will no
longer filter out bursty temporal write operations to a single
cache line from the L2 cache. We expect this to reduce the
fractions shown in Fig. 8, thus bypassing opportunities.
However, if a cache line does not exhibit bursty temporal
write operations, bypassing opportunities will still exist. We
leave such an evaluation as future work.

TABLE 3
The 21 Applications Used in Our Evaluation
Group A
App 512KB L2 | 512KBL2 | IMB L2
Misses Miss Rate | Miss Rate
ammp 85147509 79.6% 69.5%
apsi 12142896 28.5% 11.9%
art 307362632 99.9% 72.7%
bzip2 6557733 31.1% 19.5%
gcc 89271818 70.3% 3.5%
mcf 234536895 79.2% 72.7%
mgrid 24649077 782% 42.0%
swim 63121429 64.3% 59.1%
twolf 25878177 34.7% 10.9%
vpr 15226842 24.2% 43%
Group B
App 512KB L2 | 512KBL2 | IMB L2
Misses Miss Rate | Miss Rate
applu 23047662 80.9% 80.8%
crafty 392976 0.8% 0.2%
eon 1529 0.02% 0.02%
equake 29272671 82.6% 82.0%
gap 6619135 94.8% 94.8%
2zip 444278 1.1% 1.1%
mesa 1532404 11.6% 11.4%
parser 7499913 18.4% 13.7%
perlbmk 2457095 8.9% 7.8%
vortex 1585701 6.5% 53%
wupwise 7802399 82.7% 82.7%

5 EVALUATION ENVIRONMENT

Applications. To evaluate the counter-based algorithms, we
use 21 of the 26 Spec2000 applications. All Fortran90
applications (facerec, fma3d, galgel, and lucas) and sixtrack
are excluded because our compiler does not support them.
The applications and their L2 cache miss rates for both
512 KBytes and 1 MBytes L2 caches are summarized in
Table 3. The applications were compiled with gcc using -03
optimization flag. The reference input set was used for all
applications. Each application is simulated for three billion
instructions after skipping the first two billion instructions.

The applications are divided up into two groups based
on whether their performance is capacity-constrained at the
L2 cache level. An application is said to be capacity-
constrained if its number of L2 cache misses can be reduced
by more than 5 percent when the L2 cache size is increased
from 512 KBytes to 1 MByte. The reason for this categoriza-
tion is that, because our counter-based replacement and
bypassing free up wasted capacity due to dead lines and
never-reaccessed lines, so, naturally, they would only
benefit applications that are capacity-constrained. The
capacity-constrained Group A consists of five SpecFP and
five SpecINT applications. The remaining 11 applications
that are not capacity-constrained are lumped into Group B.
Our experiments confirmed that, under our algorithms,
Group B applications’ execution times are virtually un-
changed (speedups range from —1 percent to 1 percent).
Consequently, most of the results presented will focus on
Group A applications.

Simulation environment. The evaluation is performed
using a detailed execution-driven simulation environment
that supports a dynamic superscalar processor model [31].
Table 4 shows the parameters used for each component of
the architecture. The architecture is modeled cycle by cycle.

442

TABLE 4
Parameters of the Simulated Architecture

PROCESSOR

6-issue dynamic. 5 GHz. INT/FP/LD/ST FUs: 8/8/2/2
Pending LD/ST: 48/48. Branch penalty: 12 cycles
ROB entries: 256. INT/FP registers: 156/156

MEMORY

L1 data: WB, 16 KB, 2 way, 64-B line, 2-cycle hit RT

L1 inst: WB, 16 KB, 2 way, 64-B line, 2-cycle hit RT

L2 unified: WB, 512 KB, 8 way, 64-B line, 10-cycle hit RT

RT mem lat: 75 ns

Memory bus: split-trans, 8§ B, 400 MHz

Dual channel DRAM. Each channel: 2 B, 800 MHz

PREDICTOR

Prediction table: 40-KB, tagless, direct-mapped, 4-cycle access time
Counter size: 4 bits.

Latencies correspond to contention-free conditions. RT stands for
round-trip from the processor.

6 EVALUATION

In this section, we present and discuss several sets of
evaluation results. Section 6.1 shows the prediction accu-
racy and coverage of LvP and AIP compared to a sequence-
based, a time-based, and another counter-based dead line
prediction algorithm. Section 6.2 evaluates the performance
of our counter-based replacement algorithms compared to a
sequence-based algorithm, a time-based algorithm, and
another counter-based algorithm using a limited prediction
table size. Section 6.3 discusses the performance of the
counter-based bypassing algorithms. Finally, Section 6.4
studies the effect of changing the cache parameters and the
counters and prediction table sizes on the performance of
the counter-based algorithms.

6.1 Coverage and Accuracy

Fig. 9 shows a limit study of sequence-based, time-based,
and counter-based algorithms. The goal of the study is to
evaluate the different algorithms” maximum ability to learn,
store, and make correct predictions about the behavior of
dead lines. The sequence-based algorithm that we choose is
the DBP [3]. The time-based algorithm we choose is IATAC
[4], which was recently proposed by Abella et al. to predict
dead cache lines in the context of power reduction. Their
implementation can be extended and used as a time-based
replacement algorithm as well. IGDR [9] is a counter-based
algorithm that differs from LvP and AIP in several
implementation details (Section 2).

To explore the maximum performance potentials of all of
the algorithms, we use unlimited prediction structure sizes and
full learning for all algorithms. Under full learning, each
algorithm is first trained during the first run of an
application, in which Belady’s OPT [32] is used for making
replacement decisions. OPT is not implementable but
represents the theoretical upper bound performance of a
replacement algorithm because it takes into account future
information. The studied algorithms simply observe and
record what they learn from the OPT algorithm. During the
application’s second run, OPT is still used alone to make
replacement decisions, but the other algorithms, already
fully trained, are allowed to select victim lines to replace
(without actually replacing them), and the selection is
compared against the selection made by OPT. If an

IEEE TRANSACTIONS ON COMPUTERS, VOL. 57, NO. 4, APRIL 2008

algorithm’s selection of a line to replace agrees with OPT,
it is categorized as Correct Prediction. If the selection does
not match, it is categorized as Wrong Prediction. Finally, if
the algorithms are unable to make a selection (no dead lines
are predicted), it is categorized as Not Predicted. The bars are
normalized to the original number of OPT replacements.
Since the sum of Correct Prediction and Not Predicted is
necessarily equal to the original number of OPT replace-
ments, it stands at 100 percent in the figure. Therefore,
Wrong Predictions are the extra replacements due to
mispredictions, which would often lead to premature cache
line replacements and subsequent cache misses if replace-
ment decisions are made by the algorithms."

The figure shows that, on average, IATAC, IGDR, AIP,
and LvP correctly predict more replacements than the
sequence-based DBP (79 percent for both IATAC and LvP
versus 78 percent for both IGDR and AIP versus 72 percent
for DBP) while simultaneously achieving significantly
fewer wrong replacements (4 percent for AIP and LvP
versus 6 percent for IATAC and IGDR versus 12 percent for
DBP). Comparing AIP, LvP, IGDR, and IATAC, we notice
that they perform almost similarly, with slightly fewer
wrong replacements in AIP and LvP. Note that being a
time-based approach, IATAC is harder to implement than
AIP and LvP (as discussed in Section 3.5). Moreover, the
implementation of IGDR is costly as it requires several per
cache line updates on every access in addition to many
multiplications and divisions to compute and update tables
regularly; hence, AIP and LvP present a more attractive
solution. Let us consider applications that show low correct
prediction rates: bzip2, twolf, and vpr. LvP and AIP are
unable to predict many replacements because the counter
threshold values are nonrepeating, as shown in Tables 1
and 2. However, due to the conservative threshold selec-
tion, AIP and LvP refrain from replacing cache lines,
resulting in low Wrong Prediction rates. However, we note
that these same applications are also problematic for the
sequence-based DBP algorithm. DBP achieves low Correct
Prediction rates for these applications. Unfortunately, even
for these applications, DBP is still aggressive in replacing
lines even though their behavior is not highly predictable.
As a result, unlike our AIP and LvP, DBP also incurs high
Wrong Prediction rates.

6.2 Performance of Counter-Based Replacement
Algorithms

Although the previous section has discussed the upper
bound performance potentials of AIP and LvP compared to
sequence-based and time-based algorithms under unlim-
ited prediction table sizes and full learning, this section
compares their performance against other feasible alter-
natives under a more realistic implementation. Fig. 10
shows the percentage of IPC improvement of the different
algorithms over LRU replacement. The total storage over-
head of AIP and LvP, including the prediction table and

1. More conventional measures can be derived from the figure. Coverage,
defined as the percentage of OPT replacements that are predicted, is equal
to Correct Prediction since the total number of replacements is normalized at
100 percent. Accuracy, defined as the fraction of replacements that are
correct, is equal to Correct Prediction divided by the sum of Correct Prediction
and Wrong Prediction.

KHARBUTLI AND SOLIHIN: COUNTER-BASED CACHE REPLACEMENT AND BYPASSING ALGORITHMS

443

Prediction Accuracy and Coverage

!ICorrect Prediction ONot Predicted EWrong Prediction

BOESE BOESL BOESL BOSSL BOSTL HOZTC SOZ%C SOS%c SOS%L HOSTL BOLLR
Dl—(_r)4< Dl—o4< r_‘ll—(_r)4< Dl—(_r)4< DD—Q'JJ(Dl-(_r)4< Dl—(_r)—'< Dl—(_gJ(Dl—(_r)4< Dl—(_r)4< [aE>R0) <
<= <= <= <= <= <= <= <= <= <= <=
ammp apsi art bzip2 gce mcf mgrid swim twolf vpr average
Fig. 9. Coverage and accuracy of the various algorithms with infinite table sizes.
55% Performance Improvement (Speedup)
50%
45%
40% —
35%
30%
25%
20%
15%
E: IIII
. I m
0% Mem __!_ m—— HE_ - m — — -...l.l l—._-- I—._.. [[
“ sgsosss oolorys opzoxes Susoses sosorts owroxss susosz ousorzs Buzosss Musosz oogorse
< a< a< a< a< a< a< a< a< A< a<
m®0k04 xoeoro rxoeorEo xearEo xoaorEo xeorEo xearEo (A= 110] xeaorEo xoeaorEo (A= 110]
5 <= 5 <= 5 == 5 <= 5 == 5 <= 5 <= 5 == 5 <= 5 <= 5 ==
ammp apsi art bzip2 gcc mcf mgrid swim twolf vpr average

Fig. 10. Performance improvement results of various replacement algorithms.

extra fields per cache line is 61 KBytes. Thus, we compare
our algorithms against several schemes. The first scheme is
a random replacement algorithm (RND), which is used to
demonstrate that the performance improvement of our
algorithms is not due to the randomness in selecting a dead
line to replace. The second scheme simply uses a larger
(512 KBytes + 64 KBytes = 576 KBytes) L2 cache organized
as a 9-way LRU cache without any prediction mechanisms.
The second group of schemes are DBP, IATAC, and IGDR
using comparable prediction structure sizes (64 KBytes
upper bound). For DBP and IATAC, the algorithms use the
same schemes presented by their authors to predict dead
lines; however, when a line has to be chosen for replace-
ment, the line is chosen randomly from among the dead
lines in the set, similarly to LvP and AIP.

Fig. 10 shows that, on average, AIP and LvP perform the
best, achieving an average speedup of 14-15 percent without
slowing down any applications, demonstrating their robust
performance. gcc shows the greatest performance gain for
AIP and LvP (45 percent and 48 percent speedup, respec-
tively). IATAC and IGDR also perform well, butnot as well as
LvP and AIP, achieving an average speedup of 11 percent and
12 percent, respectively, and a maximum of 55 percent for gcc
using IGDR. Due to the small prediction structures, the
performance gap between DBP versus AIP, LvP, IATAC, and
IGDR increases compared to when unlimited prediction
tables are used (Fig. 9). Consequently, since AIP and LvP
perform slightly better than IATAC and IGDR while, at the
same time, having less implementation complexity (Sec-
tion 3.5 and Section 2), we believe that AIP and LvP present a
more attractive solution. DBP’s average speedup is modest:
1 percent. With small predictors, DBP is unable to store
enough sequence signatures to make many predictions and
signature aliasing prevents it from making accurate predic-
tions. The performance improvement from increasing the

cache size to 576 Kbytes is insignificant (4 percent) or
roughly only one fourth of the improvement obtained by
our AIP and LvP algorithms. Moreover, an RND performs
better than LRU for the shown applications. However, its
improvement is less than one third the improvement of
AIP and LvP, demonstrating that AIP and LvP’s perfor-
mance improvement is mainly due to their ability to
correctly predict dead lines. Overall, the figure shows that
AIP and LvP provide the best performance improvement.
For the applications in group B, DBP, IATAC, IGDR, LvP,
and AIP do not speed up or slow down any application
by more than 1 percent. The RND slows down some of
these applications by up to 5 percent.

6.3 Performance of Counter-Based Bypassing
Algorithms

Fig. 11 shows the percentage of IPC improvement when we
combine AIP and LvP with cache bypassing, compared to
AIP and LvP without cache bypassing. The IPC improve-
ment is over the LRU replacement. It also shows that, in
general, bypassing adds roughly 2 percent performance
gain compared to AIP and LvP alone, which is roughly
13 percent over the performance improvement of AIP and
LvP alone. Bypassing brings the total speedup to 15 percent
for LvP+Byp and 17 percent for AIP+Byp. Although an
extra 2 percent improvement may seem minor, keep in
mind that it is achieved for free, that is, without adding any
new hardware over AIP and LvP alone. In addition, some of
the benefits of bypassing are already realized by AIP and
LvP because they can identify never-reaccessed lines as
dead shortly after they are placed in the L2 cache.

We further analyze the performance improvement
obtained by the algorithms just described, in terms of the
number cache misses that are eliminated. Fig. 12 shows the
normalized cache misses. The bars represent the four
counter-based algorithms shown in Fig. 11. All bars are

444

IEEE TRANSACTIONS ON COMPUTERS, VOL. 57, NO. 4, APRIL 2008

Performance Improvement (Speedup)

50%
45%
40%
35%
30%
25%
20%
15%
10%

5%

N

0%

> o > > 0 > > 0 > > o > > 0 > > 0 > > o > > 0 > > 0o > > 0 > > 0 >

5959 3959 B959 5959 39§ E9L9 EELd 34§ EEod ESL§ R45d

o o o o o o o o o o o a o o o o o o o [o o

2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 <

ammp apsi art bzip2 gcc mcf mgrid swim twolf vpr average

Fig. 11. Performance improvement results of various replacement and bypassing algorithms.
1.00 Normalized L2 Cache Misses

0.90
0.80
0.70
0.60
0.50
0.40
0.30
0.20
0.10
0.00

o >0 > o >0 > o >0 > o >0 > o >0 > o >0 > o >0 > o >0 > o >0 > o >0 > o >ao >

39§ 2939 3§99 39=<§F 2§x¥ 39§ 29=xf I§=<9 29=<§ 299 39=¢

o o o a o o o o o o Q o o o o o Q o o o o o

2 < Z < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 < 2 <

ammp apsi art bzip2 gce mcf mgrid swim twolf vpr average

Fig. 12. Normalized L2 cache misses.

normalized to the number of cache misses when LRU is
used alone. The number of misses and miss rates for the
base (LRU) case are summarized in Table 3. The figure
shows that the counter-based algorithms are capable of
reducing a large fraction of misses. On average, AIP+By
eliminates 19 percent of the cache misses.

To investigate the performance better, Fig. 13 shows the
fraction of replacements that are triggered by the counter-
based replacement algorithms (Predicted) and ones that are
triggered by the LRU replacement algorithm (LRU) when
AIP is implemented. A line is replaced using LRU
replacement when there are no expired lines in the set to
replace. All bars are normalized to the total number of
replacements in the base case where the L2 cache uses the
LRU replacement algorithm. Note that the sum of Predicted
and LRU represents the new number of replacements (or
number of misses) obtained by our algorithms normalized
to when only the LRU replacement algorithm is used. Thus,
the lower the sum, the fewer the cache misses. The figure
shows that, on average, 19 percent of the original cache
misses are eliminated, with the biggest gain being for art,
gce, and mgrid. In addition, the fraction of replacements

Breakdown of Evicted Block's Source
W Predicted HLRU |

1.0

ammp apsi art bzip2 gcc mcf mgrid swim twolf vpr average

Fig. 13. Fraction of lines replaced by AIP versus by LRU.

triggered by the AIP algorithms is high and ranges between
41 percent to 91 percent, with an average of 68 percent.

Fig. 14 shows the percentage of fetched L2 cache lines
with bypassing opportunities due to our counter-based
bypassing algorithm when AIP+By is used. Note that not all
such lines do bypass the cache because our design choice is
not to bypass the cache if there is spare capacity due to
expired lines. The figure shows that 24 percent (swim) to
78 percent (ammp and twolf) of lines bypass the L2 cache
and are stored only in the L1 cache. On average, 58 percent
of all lines bypass the cache. This is due to the high
percentage of L2 cache lines that are not reaccessed after
being brought into the cache until they are replaced, as
illustrated in Fig. 8. Comparing Figs. 8 and 14, we see that
our counter-based algorithms can effectively predict a large
portion of lines that can bypass the cache.

Now, we would like to discuss why some applications can
be sped up and why some applications cannot be sped up. So
far, we have not discussed applications in Group B. Unlike
applications in Group A, these applications do not achieve
more than 1 percent speedups or 1 percent slowdowns with
sequence-based, time-based, and counter-based algorithms.

Percentage of Blocks Bypassing the Cache

100%
90%
80%
70%
60%
50%
40%
30%
20%
10%

0%

mcf mgrid swim twolf

ammp apsi art bzip2 gcc vpr average

Fig. 14. Percentage of lines that bypass the L2 cache.

KHARBUTLI AND SOLIHIN: COUNTER-BASED CACHE REPLACEMENT AND BYPASSING ALGORITHMS

tack Distance Profile (eon) tack Dis Profile (art)

100% 100%
oo |
L%
£ 70%
Soon oo
Eson £son
3o | g aon
§on §on
<a20% I < 20%

i
270

o% o%
1203 4 56 7_8 9 1011 1213 14 15 16 >16
RY Stack Position RU

(@)

1203456 7
WRY

5 9 10 11 1213 1415
Stack Position

(b)

16 >16
LRU

Fig. 15. Stack distance profiles of (a) eon and (b) art.

We found that their stack distance profiles [33], [34] reveal the
reason for the low speedups. Fig. 15 shows two extremes: the
stack distance profile for an application from group B (eon)
and an application from group A (art). The stack distance
profile collects the histogram of accesses to different LRU
stack positions in the cache. For example, if there is an access
to a line in the nth MRU position, the nth counter (nth stack
position in Fig. 15) is incremented. When a cache has A
associativity (A = 8 for our default cache configuration), a
vertical line can be drawn between the Ath and (A + 1)th
stack positions. The sum of bars to the left of the line is the
number of cache hits, whereas the sum of the bars to the right
of the line is the number of cache misses. The stack distance
profile can be used to compute the cache misses for different
associativities (and, therefore, cache sizes). To see the impact
of enlarging the cache size, we can move the vertical line to the
right. To observe the impact of reducing the cache size, we can
move the line to the left. Our counter-based algorithms can
free up cache space occupied by lines that have expired,
effectively increasing the cache space for other lines. How-
ever, Fig. 15a shows that, with eon, increasing the cache space
does not affect its number of hits or misses. Hence, we do not
obtain any performance improvement on eon even when the
effective cache size is increased. On the other hand, Fig. 15b
shows that, for art, if the cache size and associativity are
increased, there are a significant number of cache misses that
will turninto cache hits. Hence, our counter-based algorithms

189%

445

canand doimprove the performance of art significantly. Most
applications fall somewhere between art and eon and their
stack distance profiles determine how much performance
improvement can be expected by using the counter-based
algorithms.

Overall, we found that if applications can benefit from a
10-50 percent larger L2 cache, they can benefit from the
counter-based replacement algorithms.

6.4 Sensitivity to Cache Parameters

Figs. 16 and 17 study the sensitivity of AIP+By’s perfor-
mance to different cache sizes and associativities. Each bar
represents the percentage of IPC improvement (speedup) of
the AIP+By algorithm for applications in Group A over the
base case where the LRU replacement algorithm is used. In
Fig. 16, we try 256 Kbyte, 512 Kbyte, 1 Mbyte, and 2 Mbyte
cache sizes while keeping the associativity at 8-way. Fig. 16
shows that AIP+By performs well over the different cache
sizes, performing the best with a 2 Mbyte cache (25 percent
speedup), followed by a 512 Kbyte cache (17 percent
speedup). Examining individual applications, we find that
the speedup is correlated with the application’s working set
size relative to the cache size. For example, going from a
512-Kbyte L2 cache to a 1-Mbyte L2 cache, the performance
improvement of several applications (apsi, art, gcc, mgrid,
swim, and twolf) decreases because, now, most of their
working sets fit better in the cache. However, for other
applications (ammp and mcf), the performance improve-
ment increases because their working sets are now not too
much larger than the cache.

In Fig. 17, we try 4-way, 8-way, and 16-way associativ-
ities while keeping the cache size constant at 512 Kbytes.
Fig. 17 shows that AIP+By performs well across all
associativities with performance gains ranging between
11 percent for a 4-way cache to 17 percent for an 8-way

Performance Improvement (Speedup) of AIP+By

A1

1

0% --
@ W © © @ W W © © © w © © © W © © © W © © © © © © © @ © © © © © © © © © @ © @ ©
xX xX X X X xX X X X xX X X X xX X X X X X X X
$5Z2Z3 FXZF FE3IZ §EI3 FNIR EEZ3 EEI3 NI O§EZIZ OEE=IZ pEz3
O - 0 - 0 - 0 - 0 0 v - v - v - 0 O -
N 0 ISV) [SURNYo) N N 0 [SUBNYo) N0 [SUBNTo) [SUBNTo) N 0 N
ammp apsi art bzip2 gcc mcf mgrid swim twolf vpr average
Fig. 16. Effect of changing the cache size on AIP+By’s performance.
0% Performance Improvement (Speedup) of AIP+By
b
45%
40%
35%
30%
25%
20%
15%
10%
5%
0%
< © © <t © © < © © < © © <t © © < © © < © © <t © © < © © < © © <t © ©
><><‘>'< ><><r< ><><:< ><><‘>'< ><><r< ><><:< xx: ><><; ><><‘>'< ><><‘>'< ><><;
§ & « § & « S & « S &« § & « S & « & & « § & « S & « & & « § & «
- = o - - o - - o - = o - + o - - o - - o - + o - - o - - o - + o
(el 0 - wn 0 x= n 0 - [To T I w 0 G e 0 0 - 0 0 = wn n o~ wn 0 - 0 wn (e} -
n w w wn wn wn wn w wn wn w
ammp apsi art bzip2 gce mcf mgrid swim twolf vpr average

Fig. 17. Effect of changing the cache associativity on AlP+By’s performance.

446

. Performance Improvement (Speedup)
0
45%
40%
35%
30%
25%
20%
15%
10%

5%

0%

FE FE FE FE FE FE FE FE FE FE FE
d% 4% 4% 4% 4% 4% 4% 4% 4% 4% 4%
=0 =@ =@ =d =@ =@ =d =0 =@ =0 =0
Ly L€+ L+ <L+ L+ L+ L+ L+ <+ <L+ <+
o o o o a a a o o o o
< < < < < < < < < < <
ammp apsi art bzip2 gcc mcf mgrid swim twolf vpr average

Fig. 18. Effect of using infinite counter and table sizes on AIP+By’s
performance.

cache. There is no clear trend between the cache associa-
tivity and the performance gain from AIP+By.

Finally, Fig. 18 studies the effect of limiting the counter
and table sizes on the performance of AIP+By, including the
effect of aliasing in the prediction table. Fig. 18 shows that,
on average, AIP+By with limited counter and table sizes
performs better than when infinite storage structures are
used (AIP+By+Inf). We investigated this further and found
that conflicts in the prediction table are, in many cases,
beneficial as they reduce the learning time if the lines
mapping to the same entry exhibit the same behavior. In the
other case, where the lines mapping to the same table entry
do not exhibit the same behavior, the confidence bit will
remain 0, preventing incorrect predictions.

7 CONCLUSIONS

We have presented a new counter-based approach to
deadline prediction and cache bypassing. In this approach,
each line in the cache is augmented with an event counter
that is incremented on each relevant event. When the
counter reaches a threshold, the line is detected as dead and
becomes replaceable. Replacing dead lines early makes
space for lines that are not dead yet. For cache bypassing,
lines that are brought into the L2 cache but are never
reaccessed while they are resident are identified. Later, they
are placed directly in the L1 cache, bypassing the L2 cache.
By not placing dead lines and never-reaccessed lines in the
L2 cache, we free up wasted capacity for other lines, hence
improving the effective capacity of the L2 cache.

We found that the applications that benefit the most from
our dead line replacement and bypassing are ones that are
capacity constrained, for which an improvement in the
effective capacity reduces their miss rates considerably. Our
AIP and LvP perform almost equally well, speeding up
10 capacity-constrained (out of 21) Spec2000 benchmarks by
up to 48 percent and 15 percent on average (7 percent on
average for the whole 21 Spec2000 applications). Combined
with bypassing, their speedups improve further to 17 per-
cent on average. Due to using conservative design choices,
the performance of our algorithms is robust: None of the
21 tested applications is slowed down by more than
1 percent for both algorithms on all cache parameter
settings evaluated.

We compared our approach with sequence-based and
time-based dead line prediction approaches. Due to the

IEEE TRANSACTIONS ON COMPUTERS, VOL. 57, NO. 4, APRIL 2008

conservative design choices, our algorithms rarely suffer
from replacing lines that do not agree with Belady’s
theoretical OPT, while, at the same time, achieving better
coverage than the sequence-based approach, assuming
unlimited prediction structure sizes for both approaches.
In addition, due to the storage-efficiency of our counter-
based approach, it significantly outperforms the sequence-
based approach when comparable small prediction struc-
tures are used.

ACKNOWLEDGMENTS

This work is supported in part by the US National Science
Foundation through NSF Faculty Early Career Develop-
ment Award Grant CCF-0347425, by North Carolina State
University, and by the Jordan University of Science and
Technology.

REFERENCES

[1] W. Wong and J.-L. Baer, “Modified LRU Policies for Improving
Second-Level Cache Behavior,” Proc. Sixth Int'l Symp. High-
Performance Computer Architecture, 2000.

[2] W.-F. Lin and S. Reinhardt, “Predicting Last-Touch References
under Optimal Replacement,” Technical Report CSE-TR-447-02,
Univ. of Michigan, 2002.

[3] A.-C. Lai, C. Fide, and B. Falsafi, “Dead-Block Prediction and
Dead-Block Correlating Prefetchers,” Proc. 28th Int'l Symp.
Computer Architecture, 2001.

[4]]. Abella, A. Gonzalez, X. Vera, and M. O’Boyle, “IATAC: A Smart
Predictor to Turn-Off L2 Cache Lines,” ACM Trans. Architecture
and Code Optimization, 2005.

[5] S. Kaxiras, Z. Hu, and M. Martonosi, “Cache Decay: Exploiting
Generational Behavior to Reduce Cache Leakage Power,” Proc.
28th Int’l Symp. Computer Architecture, 2001.

[6] G. Chen, V. Narayanan, M. Kandemir, M. Irwin, and M. Wolczko,
“Tracking Object Life Cycle for Leakage Energy Optimization,”
Proc. ISSS/CODES Joint Conf., 2003.

[71 H. Zhou, M. Toburen, E. Rotenberg, and T. Conte, “Adaptive
Mode Control: A Static-Power-Efficient Cache Design,” ACM
Trans. Embedded Computing Systems, 2002.

[8] Z. Hu, S. Kaxiras, and M. Martonosi, “Timekeeping in the
Memory System: Predicting and Optimizing Memory Behavior,”
Proc. 29th Int’l Symp. Computer Architecture, 2002.

[9] M. Takagi and K. Hiraki, “Inter-Reference Gap Distribution

Replacement: An Improved Replacement Algorithm for Set-

Associative Caches,” Proc. 18th Int’l Conf. Supercomputing, 2004.

K. Beyls and E. D’'hollander, “Compile-Time Cache Hint Genera-

tion for EPIC Architectures,” Proc. Second Workshop Explicitly

Parallel Instruction Computing Architecture and Compilers, 2002.

Z. Wang, K. McKinley, A. Rosenberg, and C. Weems, “Using the

Compiler to Improve Cache Replacement Decisions,” Proc. Int’l

Conf. Parallel Architectures and Compilation Techniques, 2002.

J. Jeong and M. Dubois, “Cache Replacement Algorithms with

Nonuniform Miss Costs,” IEEE Trans. Computers, vol. 55, no. 4,

Apr. 2006.

J. Jeong, P. Stenstrom, and M. Dubois, “Simple, Penalty-Sensitive

Replacement Policies for Caches,” Proc. ACM Int’l Conf. Computing

Frontiers, May 2006.

C. Chi and H. Dietz, “Improving Cache Performance by Selective

Cache Bypass,” Proc. 22nd Ann. Hawaii Int’l Conf. System Sciences,

vol. 1, 1989.

Y. Wu, R. Rakvic, L.-L. Chen, C.-C. Miao, G. Chrysos, and J. Fang,

“Compiler Managed Micro-Cache Bypassing for High Perfor-

mance EPIC Processors,” Proc. 35th Ann. ACM/IEEE Int’l Symp.

Microarchitecture, 2002.

T. Johnson, D. Connors, M. Merten, and W. Hwu, “Run-Time

Cache Bypassing,” IEEE Trans. Computers, vol. 48, no. 12, Dec.

1999.

E. Tam,]J. Rivers, V. Srinivasan, G. Tyson, and E. Davidson,

“Active Management of Data Caches by Exploiting Reuse

Information,” IEEE Trans. Computers, vol. 48, no. 11, Nov. 1999.

(10]

(1]

[12]

(13]

(14]

(15]

[16]

(171

KHARBUTLI AND SOLIHIN: COUNTER-BASED CACHE REPLACEMENT AND BYPASSING ALGORITHMS

(18]

[19]

(20]

(21]

(22]

(23]

[24]

(23]

[20]

(27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

T. Johnson and W. Hwu, “Run-Time Adaptive Cache Hierarchy
Management via Reference Analysis,” Proc. 24th Int'l Symp.
Computer Architecture, 1997.

J. Rivers, E. Tam, G. Tyson, E. Davidson, and M. Farrens,
“Utilizing Reuse Information in Data Cache Management,” Proc.
12th Int’l Conf. Supercomputing, 1998.

J. Rivers and E. Davidson, “Reducing Conflicts in Direct-Mapped
Caches with Temporality-Based Design,” Proc. Int’l Conf. Parallel
Processing, 1996.

V. Milutinovic, B. Markovic, M. Tomasevic, and M. Tremblay,
“The Split Temporal/Spatial Cache: Initial Performance Analy-
sis,” Proc. Int’l Workshop SCI-Based High-Performance Low-Cost
Computing, 1996.

A. Gonzalez, C. Aliagas, and M. Valero, “A Data Cache with
Multiple Caching Strategies Tuned to Different Types of Locality,”
Proc. Ninth Int’l Conf. Supercomputing, 1995.

G. Tyson, M. Farrens,]. Matthews, and A. Pleszkun, “A New
Approach to Cache Management,” Proc. 28th Int’l Symp. Micro-
architecture, 1995.

L. Li, I. Kadayif, Y.-F. Tsai, N. Vijaykrishnan, M. Kandemir, M.
Irwin, and A. Sivasubramaniam, “Leakage Energy Management
in Cache Hierarchies,” Proc. 11th Int’l Conf. Parallel Architectures
and Compilation Techniques, 2002.

H. Dybdahl and P. Stenstrom, “Enhancing Last-Level Cache
Performance by Block Bypassing and Early Miss Determination,”
Proc. Asia-Pacific Computer Systems Architecture Conf., 2006.

J.-K. Peir, S.-C. Lai, S.-L. Lu, J. Stark, and K. Lai, “Bloom Filtering
Cache Misses for Accurate Data Speculation and Prefetching,”
Proc. Int’l Conf. Supercomputing (ICS '02), 2002.

G. Keramidas, P. Xekalakis, and S. Kaxiras, “Applying Decay to
Reduce Dynamic Power in Set-Associative Caches,” Proc. Int’l
Conf. High Performance Embedded Architectures and Compilers, 2007.
D. Wood, M. Hill, and R. Kessler, “A Model for Estimating Trace-
Sample Miss Ratios,” Proc. ACM SIGMETRICS Conf. Measurement
and Modeling of Computer Systems, 1991.

Advanced Micro Devices, “AMD Opteron Product Data Sheet,”
http:/ /www.amd.com/us-en/assets/content_type/white_papers
_and_tech_docs/23932.pdf, June 2004.

D. Culler, J. Singh, and A. Gupta, Parallel Computer Architecture: A
Hardware/Software Approach. Morgan Kaufmann, 1999.

V. Krishnan and J. Torrellas, “A Direct-Execution Framework for
Fast and Accurate Simulation of Superscalar Processors,” Proc.
Int’l Conf. Parallel Architectures and Compilation Techniques, 1998.
L. Belady, “A Study of Replacement Algorithms for Virtual
Storage Computers,” IBM Systems]., vol. 5, 1966.

R. Mattson, J. Gecsei, D. Slutz, and I. Traiger, “Evaluation
Techniques for Storage Hierarchies,” IBM Systems]., vol. 9,
no. 2, 1970.

J. Lee, Y. Solihin, and J. Torrellas, “Automatically Mapping Code
on an Intelligent Memory Architecture,” Proc. Seventh Int’l Symp.
High-Performance Computer Architecture, 2001.

447

Mazen Kharbutli received the BS degree in
electrical and computer engineering from the
Jordan University of Science and Technology
(JUST) in 2000, the MS degree in electrical and
computer engineering from the University of
Maryland, College Park, in 2002, and the PhD
degree in computer engineering from North
Carolina State University in 2005. He is currently
an assistant professor in the Department of
Computer Engineering at JUST. His research
interests include computer architecture, memory hierarchy design,
architectural support for security and reliability, and computer security.
He has released HeapServer—a secure heap management library. He
has received several scholarships and awards and is a member of the
academic honor society Phi Kappa Phi. He is a member of the IEEE.
More information can be found at http://www.kharbutli.com.

Yan Solihin received the BS degree in compu-
ter science from the Institut Teknologi Bandung
in 1995, the MASc degree in computer engineer-
ing from Nanyang Technological University in
1997, and the MS and PhD degrees in computer
science from the University of lllinois at Urbana-
Champaign in 1999 and 2002. He is currently an
associate professor with the Department of
Electrical and Computer Engineering at North
Carolina State University. He has graduated two
PhD students and seven master's degree students. He has published
more than 35 papers in computer architecture and image processing,
which cover memory hierarchy design, architecture support for quality of
service, security, and software reliability. He has released ACAPP—a
cache performance model toolset, HeapServer—a secure heap man-
agement library, Scaltool—a parallel program scalability pinpointer, and
Fodex—a forensic document examination toolset. He was a recipient of
the 2005 IBM Faculty Partnership Award, 2004 NSF Faculty Early
Career Award, and 1997 AT&T Leadership Award. He is a member of
the IEEE and ACM SigMicro. More information can be found at http://
www.ece.ncsu.edu/arpers.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

