
ELE 655

Microprocessor System Design

Section 2 – Instruction Level Parallelism

Class 1 – Pipeline Review



2 © tjELE 655 – Fall 2015

ILP

• Basic Pipeline

Pipeline Review

Notes:   Reg shows up two places but actually is the same register file
Writes occur on the second half of the clock cycle, reads on the first half



3 © tjELE 655 – Fall 2015

ILP

• Basic Pipeline Implementation

Pipeline Review

Notes:   Writes occur on the second half of the clock cycle, reads on the first half



4 © tjELE 655 – Fall 2015

ILP

• Basic Pipeline with Control

Pipeline Review



5 © tjELE 655 – Fall 2015

ILP

• Pipeline Hazards

• Hazards are conditions where the next instruction cannot perform 

its assigned pipeline action in the next clock cycle

• 3 types
• Structural

• Data

• Control

Pipeline Review



6 © tjELE 655 – Fall 2015

ILP

• Structural Hazards

• These hazards result from a resource conflict

• Classic case is Harvard vs. vonNeuman memory architectures
• vonNeuman architectures share a single memory for program and data

• A lw or sw command requires access to data memory to load or store the 

data value

• It would not be possible to fetch the appropriate instruction during this 

clock cycle since the memory would be in use

• The IF would be stalled and a “bubble” would be created in the pipeline

Pipeline Review



7 © tjELE 655 – Fall 2015

ILP

• Structural Hazards

• vonNeuman memory architecture

data memory access prevents a concurrent instruction fetch

Pipeline Review

Time 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200

IF LW 2 3 Stall 4 5 6 7 8 9 10 11 12 13 14

ID LW 2 3 bubble 4 5 6 7 8 9 10 11 12 13

EX LW 2 3 bubble 4 5 6 7 8 9 10 11 12

MEM LW 2 3 bubble 4 5 6 7 8 9 10 11

WB LW 2 3 bubble 4 5 6 7 8 9 10



8 © tjELE 655 – Fall 2015

ILP

• Structural Hazards

• Too few registers

• Complex instructions  multi resource requirements (dual write)

• Non-pipelined functions

• Mismatched pipelines

Pipeline Review



9 © tjELE 655 – Fall 2015

ILP

• Data Hazards

• These hazards result from a dependence of one instruction on 

another instruction still in the pipeline

• Consider the following code snippit

add   $s0, $t0, $t1

sub   $t2, $s0, $t3

• The value of $s0 is needed to perform the subtraction

Pipeline Review



10 © tjELE 655 – Fall 2015

ILP

• Data Hazards

add   $s0, $t0, $t1

sub   $t2, $s0, $t3

• 2 clock cycle bubbles are created

• It would be 3 bubbles – except we can take advantage of our convention
• writes occur in the first half of the clock cycle

• reads occur in the second half of the clock cycle

• the WB occurs during the same clock cycle as the register read

Pipeline Review

Time 200 200 200 200 200 200 200 200 200 200 200 200 200 200 200

IF add sub 3 3 4 5 6 7 8 9 10 11 12 13 14

ID add stall stall 3 4 5 6 7 8 9 10 11 12 13

EX add bubble bubble 3 4 5 6 7 8 9 10 11 12

MEM add bubble bubble 3 4 5 6 7 8 9 10 11

WB add bubble bubble 3 4 5 6 7 8 9 10



11 © tjELE 655 – Fall 2015

ILP

• Data Hazards

add   $s0, $t0, $t1

sub   $t2, $s0, $t3

• 2 clock cycle bubbles are created

• It would be 3 bubbles – except we can take advantage of our convention
• writes occur in the first half of the clock cycle

• reads occur in the second half of the clock cycle

• the WB occurs during the same clock cycle as the register read

Pipeline Review



12 © tjELE 655 – Fall 2015

ILP

• Data Hazards

• In many cases the compiler can avoid a data hazard

add   $s0, $t0, $t1

sub   $t2, $s0, $t3

or      $s2, $t0, $t1

and   $s3, $t0, $t3

add   $s4, $t1, $t3

add   $s0, $t0, $t1

or      $s2, $t0, $t1

and   $s3, $t0, $t3

add   $s4, $t1, $t3

sub   $t2, $s0, $t3

Pipeline Review

re-order the instruction to remove
the hazard condition



13 © tjELE 655 – Fall 2015

ILP

• Data Hazards

• Hardware can also be used to avoid data hazards
• called forwarding or bypassing

• provide the needed data as soon as it is valid

• requires extra circuitry

Pipeline Review



14 © tjELE 655 – Fall 2015

ILP

• Data Hazards

Pipeline Review



15 © tjELE 655 – Fall 2015

ILP

• Detecting the need for Forwarding

• Conditions:

• 1a) EX/MEM.RegisterRd = ID/EX.RegisterRs
• EX/MEM currently holds a value needed by an instruction about to enter EX

• 1b) ) EX/MEM.RegisterRd = ID/EX.RegisterRt
• EX/MEM currently holds a value needed by an instruction about to enter EX

• 2a) MEM/WB.RegisterRd = ID/EX.RegisterRs
• MEM/WB currently holds a value needed by an instruction about to enter EX

• 2b) MEM/WB.RegisterRd = ID/EX.RegisterRt
• MEM/WB currently holds a value needed by an instruction about to enter EX

Pipeline Review



16 © tjELE 655 – Fall 2015

ILP

• Pipeline with Forwarding

Pipeline Review



17 © tjELE 655 – Fall 2015

ILP

• Data Hazards

• Hardware cannot avoid all data hazards
• cannot go backwards in time !

Pipeline Review

lw $s0, 20($t1)   

sub $t2, $s0, $t3                  



18 © tjELE 655 – Fall 2015

ILP

• Data Hazards

• Forwarding plus compiler optimizations can avoid additional data 

hazards

Pipeline Review

lw $t1, 0($t0)

lw $t2, 4($t0)

add $t3, $t1, $t2

sw $t3, 12($t0)

lw $t4, 8($t0)

add $t5, $t1, $t4

sw $t5, 16($t0)

stall

stall

lw $t1, 0($t0)

lw $t2, 4($t0)

lw $t4, 8($t0)

add $t3, $t1, $t2

sw $t3, 12($t0)

add $t5, $t1, $t4

sw $t5, 16($t0)

11 cycles13 cycles



19 © tjELE 655 – Fall 2015

ILP

• Stalling the pipeline and inserting a bubble

Pipeline Review



20 © tjELE 655 – Fall 2015

ILP

• Branch Hazard

• Consider the following code snippit

beq $1, $3, skip

and $13, $6, $2

add $14, $2, $2

skip lw $4, 50($7)

• The branch decision is known after the calculation of the branch 

address and the comparison (subtract and check for zero), and is 

available in the MEM stage

• If the branch is ignored – we will have the and, add and lw

instructions in the pipeline – all is well

• If the branch is taken we will have the and, add and lw instructions 

in the pipeline – but we do not want them to execute

Pipeline Review



21 © tjELE 655 – Fall 2015

ILP

• Addition of Branch Logic

Pipeline Review



22 © tjELE 655 – Fall 2015

ILP

• Branch Hazard

• In our current implementation

• We assume branches are not taken

• We would need to flush the pipeline for taken branches
• Branch decision is available in the MEM stage

• Assuming the branch target is not already in the pipeline

•  inserting 3 bubbles into the pipeline

• ? – How far can we move the decision forward to reduce the impact 

of taken branches

Pipeline Review



23 © tjELE 655 – Fall 2015

ILP

• Branch Hazard

• Most branches are simple comparisons

• equal  all bits the same

• negative/positive  look at msb

• We can move most of the branch prediction logic forward to the ID stage
• We have register values (some may be forwarded!)

• Need to modify the forwarding logic to account for branches

• We can move the branch address calculation forward to the ID stage

• Still have a single cycle stall – IF of the next instruction is occurring in 

parallel with ID detection of the taken branch

Pipeline Review



24 © tjELE 655 – Fall 2015

ILP

• Early Branch Detection

Pipeline Review



25 © tjELE 655 – Fall 2015

ILP

• Branch Hazard

• This approach reduces the impact of branch hazards

• There may still be data hazards that cannot be avoided

• Branch dependent on previous lw instruction
lw $1, 50($7)

beq $1, $4, skip

the lw result will not be available until the MEM cycle is complete

 2 stall cycles

Pipeline Review



26 © tjELE 655 – Fall 2015

ILP

• Branch Prediction

• For deeper pipelines – the cost of missing a branch decision can 

be significant – many clock cycles lost

• Leads to branch prediction
• Static – Compile Time

• Dynamic – Execution time

Pipeline Review



27 © tjELE 655 – Fall 2015

ILP

• Static Branch Prediction

• Freeze the pipeline until decision known
• Do not allow additional instructions until branch decision known

• Insert No-op instruction(s)

• Assume NOT taken
• Allow sequential instruction into pipeline

• HW must prevent commits until decision known

• Must have HW to nop currently executing instructions

• This is our simple pipeline solution

• Assume Taken
• As soon as target address available – start reading instructions

• Used when complicated conditional instructions are part of the IS

Pipeline Review

Compiler can help
by ordering instructions
to match the HW



28 © tjELE 655 – Fall 2015

ILP

• Static Branch Prediction

• Delayed Branch

Branch instruction

Sequential successor    (always executed instruction)   - delay slot

Branch target if taken

Pipeline Review



29 © tjELE 655 – Fall 2015

ILP

• Static Branch Prediction

• Delayed Branch

Branch instruction

Sequential successor    

Branch target if taken

Pipeline Review

Must be OK whether branch taken or not



30 © tjELE 655 – Fall 2015

ILP

• Static Branch Prediction

• Better than nothing – but not good enough for complex pipelines

Pipeline Review



31 © tjELE 655 – Fall 2015

ILP

• Dynamic Branch Prediction – 1 bit

• Use a small branch prediction buffer
• n words deep

• 1 bit of prediction value (1 bit word)

• n is derived from the PC value
• last 8 bits of PC  256 words deep

• The PC value references one of n predictions values
• Assuming a branch instruction

• Take the branch if the prediction value is set to 1

• Don’t take the branch if the prediction value is set to 0

• If the prediction was wrong – invert the prediction value

Pipeline Review



32 © tjELE 655 – Fall 2015

ILP

• Dynamic Branch Prediction – 1 bit

Pipeline Review

…

PC
ADDR B

0x00000000 0

0x00000001 0

0x00000010 1

…

0x11111110 1

0x11111111 1

Branch Table



33 © tjELE 655 – Fall 2015

ILP

• Dynamic Branch Prediction – 1 bit

• Issues

• Multiple PC values point to the same branch table location
• over write each other

 wrong guesses

• Each incorrect guess can lead to 2 wrong guesses
• eg.  Assume mostly loop back – bit set to 1

when you do not loop back – you stall and set bit to 0

next cycle you want to loop back but bit is 0 – stall and set bit to 1

• 2 stalls 

Pipeline Review



34 © tjELE 655 – Fall 2015

ILP

• Dynamic Branch Prediction – 2 bit

• Use 2 bits to make prediction decisions
• Only change the prediction on 2 successive mispredictions

• Resolves the 2 stall issue of 1 bit prediction

Control Hazards

…

PC
ADDR B1 B0

0x00000000 0 0

0x00000001 0 0

0x00000010 1 0

…

0x11111110 0 1

0x11111111 1 1

Branch Table

Option: Include bits in cache block
instead of separate location – issue?



35 © tjELE 655 – Fall 2015

ILP

• Dynamic Branch Prediction – 2 bit

Pipeline Review



36 © tjELE 655 – Fall 2015

ILP

• Dynamic Branch Prediction – 2 bit

Pipeline Review


