
ELE 655

Microprocessor System Design

Section 2 – Instruction Level Parallelism

Class 3 – Dynamic Scheduling

2 © tjELE 655 – Fall 2015

ILP

• Static Scheduling

• Structural Hazards

• Data Hazards
• Data dependencies

• Name dependencies

• Control Dependencies

•  Reorder instructions, replace names, recalculated fixed values

Instruction level Parallelism

3 © tjELE 655 – Fall 2015

ILP

• Dynamic Scheduling

• Hardware re-orders instructions
• Maintain data flow

• Maintain exception behavior

• Enables:
• Portable code

• Unknowns at compile time

• Unexpected delays – eg. cache delays

• HW cost is significant

Instruction level Parallelism

4 © tjELE 655 – Fall 2015

ILP

• Simple Pipeline

• In order instruction issue and execution
• Stalls stop all subsequent instructions

• If multiple execution units are available – all are stalled

• Check for structural and data hazards in the ID stage
• Issue when all was clear

Instruction level Parallelism

5 © tjELE 655 – Fall 2015

ILP

• Issue Process

• Break issue into 2 parts
• Check for structural hazards

• Check for data hazards (wait on data hazards to clear)

• Assuming no structural hazard – start execution as soon as data is

available

• Out of Order Execution

• Out of Order Completion

Instruction level Parallelism

6 © tjELE 655 – Fall 2015

ILP

• Out of Order Execution

• Creates the possibility of WAR and WAW hazards which did not

originally exist

DIV.D F0,F2,F4

ADD.D F6,F0,F8

SUB.D F8,F10,F14

MUL.D F6,F10,F8

• All data values are available for SUB.D and no structural hazard
• If we move it forward we create a WAR Hazard for ADD.D

Instruction level Parallelism

Anti-dependence

7 © tjELE 655 – Fall 2015

ILP

• Out of Order Completion

• Creates issues with exception handling

• Exactly the exceptions that would arise in normal program order

must arise

• Instructions completed out of order temporarily leave the processor

in a different state than if completed in order
• Some instruction complete early

• Some instructions complete late

• Any exception during this temporary period will leave the processor

in a different state
• Imprecise Exception

Instruction level Parallelism

8 © tjELE 655 – Fall 2015

ILP

• Out of Order Execution

• Split the ID pipe into Issue and Read Operands

• Issue
• decode instructions

• Check for structural hazards

• Read Operands
• Wait for all data hazards to clear

• Provide operands to execute stage

Instruction level Parallelism

9 © tjELE 655 – Fall 2015

ILP

• Out of Order Execution

• All instructions are issued in order
• In-order issue

• Can be stalled, or bypass each other while waiting for operands to

be available
• Out of order execution start

Instruction level Parallelism

10 © tjELE 655 – Fall 2015

ILP

• Tomasulo’s Algorithm

• Dynamic Scheduling

• Tracks operand availability to limit RAW hazards

• Uses register renaming to limit WAR and WAW hazards

Instruction level Parallelism

11 © tjELE 655 – Fall 2015

ILP

• Tomasulo’s Algorithm

• WAR and WAW hazards

DIV.D F0,F2,F4

ADD.D F6,F0,F8

S.D F6,0(R1)

SUB.D F8,F10,F14

MUL.D F6,F10,F8

Anti-dependencies: ADD.D–SUB.D, S.D-MUL.D

Output dependencies: ADD.D-MUL.D

WAR – F8 in Add.d

WAR – F6 in S.D

WAW – MUL.D finishes before ADD.D

Instruction level Parallelism

12 © tjELE 655 – Fall 2015

ILP

• Tomasulo’s Algorithm

• WAR and WAW hazards – register renaming

DIV.D F0,F2,F4 DIV.D F0,F2,F4

ADD.D F6,F0,F8 ADD.D S,F0,F8

S.D F6,0(R1) S.D S,0(R1)

SUB.D F8,F10,F14 SUB.D T,F10,F14

MUL.D F6,F10,F8 MUL.D F6,F10,T

WAR – F8 in Add.d --- T retains data dependency, clears ADD

WAR – F6 in S.D --- S separates S.D and MUL.D

WAW – MUL.D finishes before ADD.D --- S S not needed after S.D

Instruction level Parallelism

13 © tjELE 655 – Fall 2015

ILP

• Tomasulo’s Algorithm

• Register Renaming done by Reservation Stations

• Reservation Station
• Buffers operands for each functional unit

• Receives updates when available

• Provides operands when ready

• Shares a Common Data Bus with
• Other functional units Reservation Stations

• Functional unit outputs

• Register File

• Store Buffers

Instruction level Parallelism

14 © tjELE 655 – Fall 2015

ILP

• Tomasulo’s Algorithm

Instruction level Parallelism

Instruction

Operand
or
Name of
another
Reservation
station

15 © tjELE 655 – Fall 2015

ILP

• Tomasulo’s Algorithm

• Instruction Flow – Issue

• Get next instruction from Queue

• IF – the required execute unit has a free reservation station
Issue the instruction (Dispatch)

with either

the value from the register if available

or

identify the functional unit that will create the value

Else

Stall – structural hazard

Instruction level Parallelism

16 © tjELE 655 – Fall 2015

ILP

• Tomasulo’s Algorithm

• Instruction Flow – Execute

• Functional Units monitor the Reservation stations

IF all operands are available in the RS – execute

If an operand is not available – the RS monitors the Common Data

Bus until the operand becomes available (completes execution

elsewhere)

Once available – load into reservation station

Instruction level Parallelism

17 © tjELE 655 – Fall 2015

ILP

• Tomasulo’s Algorithm

• Instruction Flow – Execute

• Load/Stores are 2 step process

• Calculate the effective address (waiting on the base register)

• Place the effective address in the LD/ST buffers

• Loads – execute when memory unit available

• Stores – wait for the store data to be available

• Loads/stores are kept in program order
• via the effective address calculation

Instruction level Parallelism

18 © tjELE 655 – Fall 2015

ILP

• Tomasulo’s Algorithm

• Instruction Flow – Execute

• Multiple instruction can be ready at the same time (same unit)
• Some sort of prioritization scheme needed

Instruction level Parallelism

19 © tjELE 655 – Fall 2015

ILP

• Tomasulo’s Algorithm

• Instruction Flow – Write Result

• When complete
• Write result to the CDB

• Any registers or reservation stations waiting for it will grab it from

the CDB

Instruction level Parallelism

20 © tjELE 655 – Fall 2015

ILP

• Tomasulo’s Algorithm

• Tags
• Indicate the location from which the operand can be retrieved
• Reservation station or load buffer

• CDB + RS  replace our forwarding concept

• 1 additional clock of latency is introduced
• Getting from result  CDB  RS

Instruction level Parallelism

21 © tjELE 655 – Fall 2015

ILP

• Tomasulo’s Algorithm

• Reservation Station Fields

• OP – operation to be performed by the functional unit

• Qj,Qk – tag of reservation station producing the desired result

a value of 0 indicated the result is already available

• Vj,Vk – value of operand iff available

• A – used in Load/Store – initially the immediate value is here

the effective address is here when ready

• Busy – this reservation station is in use

• Register File Field
• Qi – reservation station tag holding the value to store in the register

• Note registers are loaded and stored via the load store buffers

Instruction level Parallelism

22 © tjELE 655 – Fall 2015

ILP

• Tomasulo’s Algorithm

• Fig 3.7 and 3.8

• Load – 1 cycle

• Add – 2 cycles

• Mult – 6 cycles

• Divide – 12 cycles

Instruction level Parallelism

23 © tjELE 655 – Fall 2015

ILP

• Tomasulo’s Algorithm

• Fig 3.10

• Adds ignored

• Branches assumed tacked

• Load – 1 cycle

• Add – 2 cycles

• Mult – 6 cycles

• Divide – 12 cycles

Instruction level Parallelism

