
ELE 655

Microprocessor System Design

Section 2 – Instruction Level Parallelism

Class 4 – HW Based Speculation



2 © tjELE 655 – Fall 2015

ILP

• Dynamic Branch Prediction – 2 bit

• Use 2 bits to make prediction decisions
• Only change the prediction on 2 successive mispredictions

• Resolves the 2 stall issue of 1 bit prediction

Instruction Level Parallelism

…

PC
ADDR B1 B0

0x00000000 0 0

0x00000001 0 0

0x00000010 1 0

…

0x11111110 0 1

0x11111111 1 1

Branch Table

Option: Include bits in cache block
instead of separate location – issue?



3 © tjELE 655 – Fall 2015

ILP

• Correlating Branch Predictor

• Use information from recent (unrelated) branches in the current 

branch prediction

if  (aa==2)

aa=0;

if  (bb==2)

bb=0;

if  (aa! = bb) 

{…

• Clearly the 3rd if is correlated to the first 2

Instruction Level Parallelism



4 © tjELE 655 – Fall 2015

ILP

• Correlating Branch Predictor

• Use information from the previous m branches to choose 1 of 2m

solutions from an n bit branch predictor

• Called a (m,n) correlated branch predictor

• Ex.  (4,2)

Instruction Level Parallelism

Address Address bottom Prev #3 Prev #2 Prev #1 Prev #0 Pbit 1 Pbit 0

...
10010001 001 0 0 0 0 1 1

0 0 0 1 0 0

0 0 1 0 0 0

...
1 1 1 1 1 0

010 0 0 0 0 0 1

...
111 1 1 1 0 0 0

1 1 1 1 1 1

101010000 000 0 0 0 0 0 1

...
1 1 1 1 1 0

...

Branch Prediction Table Index Branch Prediction

Tablem bit shift register



5 © tjELE 655 – Fall 2015

ILP

• Correlating Branch Predictor

• Consider a 4K entry branch table (maps 4K branch addresses) and 

a (0,2) correlated branch predictor

• # bits required 
• m bits in the shift register

• 2m sets of branch predictors

• n bits for each predictor

= 2m x n x # entries = 20 x 2 x 4K = 8K + 0 = 8K

• Consider a (2,2) correlated branch predictor with the same # of bits
• 22 x 2 x # entries = 8K

# entries = 1K entries

4x fewer branch addresses or 4x as many aliases

Instruction Level Parallelism



6 © tjELE 655 – Fall 2015

ILP

• Correlating Branch Predictor

• (2,2) provides better performance
Even compared to an infinite

uncorrelated predictor

Instruction Level Parallelism



7 © tjELE 655 – Fall 2015

ILP

• Tournament Branch Predictor

• Choose between multiple types of predictors based on the 

predictors individual records at predicting correctly

• Select the global history predictor e.g (2,2)

vs.

• Select the local history predictor e.g 8 bit branch predictor

• Need an additional predictor to model the choice e.g a 2 bit predictor

Instruction Level Parallelism



8 © tjELE 655 – Fall 2015

ILP

• Tournament Branch Predictor

Instruction Level Parallelism



9 © tjELE 655 – Fall 2015

ILP

• Control Hazards - Revisited

• Our primary control hazard is Branches

• Branch Prediction only goes so far
• Wide issue processors may have branches to execute every clock cycle

BR

Add

Sub

LD

BR

Add

Add

ST

BR

…

 BR every clock

Instruction level Parallelism



10 © tjELE 655 – Fall 2015

ILP

• Control Hazards - Revisited

• Prediction (with dynamic scheduling)

• Predict branch direction
• Fetch instruction

• Issue instruction

• Execution must wait on actual branch decision

• Speculation

• Predict branch direction
• Fetch instruction

• Issue instruction

• Execute instruction

Instruction level Parallelism



11 © tjELE 655 – Fall 2015

ILP

• Hardware Speculation

• Dynamic branch prediction
• To maximize correct predictions

• Dynamic scheduling
• To allow out of order execution

• Speculation
• To allow execution before control dependencies are resolved

• Correction
• A method to undo effects of incorrect predictions

Instruction level Parallelism



12 © tjELE 655 – Fall 2015

ILP

• Hardware Speculation

• Modify our dynamic scheduling algorithm

• Separate
• Forwarding of results (bypassing)

from

• Actual completion of the instruction
• Delay any register or memory writes

• Called – Commit

• While instructions are speculative
• Allow them to provide results to other instructions

• Once the instructions are no longer speculative
• Allow them to commit

Instruction level Parallelism



13 © tjELE 655 – Fall 2015

ILP

• Hardware Speculation

• Modify our dynamic scheduling algorithm

• Allow instructions to execute out of order

• Force instructions to commit in order
• Branches must be resolved before anything in the basic block is commited

• Instructions (results) waiting to commit are held in the Reorder Buffer

Instruction level Parallelism



14 © tjELE 655 – Fall 2015

ILP

• Hardware Speculation

• Reorder Buffer

• Holds instruction results awaiting commit

• These would have otherwise been written to the register file
• Which would make the results available to future instructions

 provide results to the reservation stations

Instruction level Parallelism



15 © tjELE 655 – Fall 2015

ILP

• Hardware Speculation

• Reorder Buffer

• Holds results until ready to commit

• Very similar to the store buffer
• Holds results until memory is ready

• Combine the Reorder Buffer and the Store Buffer

Instruction level Parallelism



16 © tjELE 655 – Fall 2015

ILP

• Hardware Speculation

• Reorder Buffer - fields

• Instruction Type
• Branch

• Store

• Register operation (includes loads)

• Destination
• Memory address for stores

• Register (includes loads)

• Value

• Ready
• Instruction complete and value is ready for use or commit

Instruction level Parallelism



17 © tjELE 655 – Fall 2015

ILP

• Hardware 

Speculation

Instruction level Parallelism



18 © tjELE 655 – Fall 2015

ILP

• Hardware Speculation

• Register renaming

• Moves to the Reorder Buffer
• Every instruction exists in the ROB

• Reservation stations still needed to buffer operands
• Reference the reorder buffer instead of the execute unit for missing operands

• Add a field to indicate the destination in the ROB for the instruction

Instruction level Parallelism



19 © tjELE 655 – Fall 2015

ILP

• Hardware Speculation

• Issue
Fetch instruction

IF – room in ROB and RS

send operands to the RS if available

send ROB id to RS for any missing operands

send ROB id for result to RS

Else - stall

• Execute
IF – missing operand(s)

Monitor CDB for operands (tagged by ROB entry)

Else - execute

Instruction level Parallelism



20 © tjELE 655 – Fall 2015

ILP

• Hardware Speculation

• Write Result
When result is available

Provide result to CDB along with ROB tag

any RS waiting will take the result from the CDB

the tagged ROB will take the result from the CDB

Mark the RS as free

Note: stores require both the address and the value to eventually end up in the ROB

Instruction level Parallelism



21 © tjELE 655 – Fall 2015

ILP

• Hardware Speculation

• Commit
• 3 cases

• Register instruction (excludes Stores and Branches)
IF Instruction is at the head of the ROB

Rob indicates the result is ready for commit

Then Update the register (register file)

Mark the ROB entry as available

• Store
IF Instruction is at the head of the ROB

Rob indicates the result is ready for commit

Then Update the memory

Mark the ROB entry as available

Instruction level Parallelism



22 © tjELE 655 – Fall 2015

ILP

• Hardware Speculation

• Commit
• 3 cases

• Branch
IF Prediction was correct

Then Mark the ROB entry as available

IF Prediction was wrong

Then Flush the ROB

- all speculatively executed instructions are lost

- no registers or memory has been updated

Restart at correct branch location

Note – if early branch decisions are possible – only flush the parts of the ROB

after the branch

Instruction level Parallelism



23 © tjELE 655 – Fall 2015

ILP

• Hardware Speculation

• Fig 3.12   vs   Fig 3.8

• Loop example   - Fig 3.13

note RS is empty

Instruction level Parallelism



24 © tjELE 655 – Fall 2015

ILP

• Hardware Speculation

• Precise Exceptions

• Add an exception field to the ROB

• When the instruction reaches the head of the ROB – then execute the 

exception

• If the exception was in a mis-predicted branch that executed it will be 

purged before reaching commit

Instruction level Parallelism


