
ELE 655

Microprocessor System Design

Section 2 – Instruction Level Parallelism

Class 5 – Multiple Issue

2 © tjELE 655 – Fall 2015

ILP

• How do we achieve a CPI < 1

• Superscalar architecture supports multiple execution units

• Pipeline make for efficient operation

• Need to have some way to complete more than 1 instruction per

clock cycle

• need to issue more than 1 instruction per clock cycle

Instruction Level Parallelism

3 © tjELE 655 – Fall 2015

ILP

• 3 possible solutions

• Statically scheduled superscalar processors

• VLIW (very long instruction word) processors

• dynamically scheduled superscalar processors

Instruction Level Parallelism

4 © tjELE 655 – Fall 2015

ILP

• 3 possible solutions

Instruction Level Parallelism

5 © tjELE 655 – Fall 2015

ILP

• VLIW

• Package multiple operations into one instruction
• Static scheduling

• Example VLIW processor:
• One integer instruction (or branch)
• Two independent floating-point operations
• Two independent memory references

• Must be enough parallelism in code to fill the available slots

• Fig 3.16

Instruction Level Parallelism

6 © tjELE 655 – Fall 2015

ILP

• VLIW

• Disadvantages

• Statically finding parallelism
• May be difficult to find this in a basic block
• Global scheduling algorithms

• Code size
• Need to do a lot of loop unrolling larger code size
• Unused slots create wasted memory space (assuming aligned words)

• No hazard detection hardware
• Functional units forced to work in lockstep

• Binary code compatibility
• Instructions are tightly coupled to both instruction set and implementation

(numbers and types of functional units)

Instruction Level Parallelism

7 © tjELE 655 – Fall 2015

ILP

• Current processors

• Dynamically scheduled with speculation

add Multiple issue

• Simple 2 instruction issue
• Operate on half clock cycles

• More complex multiple issues requires
• Complex issue logic

• Wider buses to handle multiple transactions per cycle

• Ability to handle dependencies between instructions issued together
• Need to update tables in parallel

Instruction Level Parallelism

8 © tjELE 655 – Fall 2015

ILP

• Current processors

Instruction Level Parallelism

Wider CDB
Wider Operand bus
More complex issue logic

9 © tjELE 655 – Fall 2015

ILP

• Multiple Issue Process

• Given a bundle of instructions to issue
• Limit the number of each type of instruction allowed

• Anything over the limit is broken out of the bundle and waits

• E.g.. 2 L/S, 3 Add, 1 FP

• Once the bundle is limited (but before the specific instruction is

known)
• Assign a ROB to each instruction

• Assign a RS for each execution unit to the bundle

• If either are limited – break the bundle

• Analyze the dependencies between instructions in the bundle

• Update the ROB and RS based on dependencies

Instruction Level Parallelism

10 © tjELE 655 – Fall 2015

ILP

• Multiple Issue Process – no speculation

Instruction Level Parallelism

11 © tjELE 655 – Fall 2015

ILP

• Multiple Issue Process – with speculation

Instruction Level Parallelism

12 © tjELE 655 – Fall 2015

ILP

• Increasing Fetch Bandwidth

• Reduce the delays associated with branch calculations

• Branch Target Buffer

• Buffer of branch PC locations for TAKEN branches

• Includes the PC of the new (taken) location

• Each instruction is checked against the buffer
• If not in the buffer

• Not a branch

• A not taken branch

• If in the buffer

• It is a taken branch and the PC is loaded with the predicted PC

• no branch delay

Instruction Level Parallelism

13 © tjELE 655 – Fall 2015

ILP

• Branch Target Buffer
• Looks like a cache

Instruction Level Parallelism

14 © tjELE 655 – Fall 2015

ILP

• Branch Target Buffer

• Modification – Branch folding

• Instead of storing predicted PC, store 1 or more actual instructions

from the predicted location

• Provides the instruction immediately instead of at the next fetch

cycle

• Can lead to 0 cycle branches

Instruction Level Parallelism

15 © tjELE 655 – Fall 2015

ILP

• Return Address Prediction

• Procedure returns can be a significant portion of all branches

(>15%)

• These involve indirect jumps (location not known until run time)

• Since procedures can be called from many locations, the branch

target buffer is not very effective

• Create a small stack that pushes the PC on calls and pops the

address on returns
• If it is sufficiently deep very accurate performance

Instruction Level Parallelism

16 © tjELE 655 – Fall 2015

ILP

• Return Address Prediction

Instruction Level Parallelism

17 © tjELE 655 – Fall 2015

ILP

• Multiple Issue

• Our instruction fetch function has become very complex

• Break it away from the rest of the pipeline and introduce a buffer

between the fetch logic and the pipeline

• Allows the fetch circuitry to operate while keeping the pipeline fed

Instruction Level Parallelism

18 © tjELE 655 – Fall 2015

ILP

• Arm Cortex A8
• Dual Issue

• Statically Scheduled

Instruction Level Parallelism

512 entry
2 way 4K Global

History Buffer
8 entry

Return stack

19 © tjELE 655 – Fall 2015

ILP

• Arm Cortex A8

Instruction Level Parallelism

Pull next 2
instructions

from the cache line

Decode
Instructions

Queue
Instructions

Opcode and
Register operands
Sent to execution

Dynamic
Issue

20 © tjELE 655 – Fall 2015

ILP

• Arm Cortex A8

Instruction Level Parallelism

Shared
Arithmetic / Multiply

Execution pipe

21 © tjELE 655 – Fall 2015

ILP

• Arm Cortex A8

• Ideal CPI = 0.5

Instruction Level Parallelism

22 © tjELE 655 – Fall 2015

ILP

• Arm Cortex A9
• Dynamically scheduled with speculation

• Ideal CPI = 0.5

Instruction Level Parallelism

23 © tjELE 655 – Fall 2015

ILP

• Intel Core i7

Instruction Level Parallelism

Multi-level BTB
Return address stack

Update committed register s
In order

24 © tjELE 655 – Fall 2015

ILP

• Intel Core i7

Instruction Level Parallelism

What is ideal?

