B A N9 ll 11 : TETNIY IRy
. "' -

U

BRI Lo

g SRRy
Ay A A | ° : "‘::J

Lot Rt s
. &4 o - -
o bR i "1'0‘ | -

. - : . :
B
')

1
;
v

ELE 655
Microprocessor System Design

Section 2 — Instruction Level Parallelism

Class 5 — Multiple Issue

B A N9 ll 11

.‘ '.‘ . 48

-
.
: ° "
. .
. ’ ;"
.

* How do we achieve a CPI< 1

Superscalar architecture supports multiple execution units

Pipeline make for efficient operation

Need to have some way to complete more than 1 instruction per
clock cycle

- need to issue more than 1 instruction per clock cycle

ELE 655 —Fall 2015 2 ©tj

BAsesindeitiiido

« 3 possible solutions

 Statically scheduled superscalar processors
* VLIW (very long instruction word) processors

» dynamically scheduled superscalar processors

ELE 655 —Fall 2015 3 ©tj

BAsesindeitiiido

« 3 possible solutions

Issue Hazard Distinguishing
Common name structure detection Scheduling characteristic Examples
Superscalar Dynamic Hardware Static In-order execution Mostly in the
(static) embedded space:
MIPS and ARM.
including the ARM
Coretex A8
Superscalar Dynamic Hardware Dynamic Some out-of-order None at the present
(dynamic) execution, but no
speculation
Superscalar Dynamic Hardware Dynamic with Out-of-order execution Intel Core 13, 15, 17;
(speculative) speculation with speculation AMD Phenom: IBM
Power 7
VLIW/LIW Static Primarily Static All hazards determined Most examples are in
software and indicated by compiler signal processing,
(often mmplicitly) such as the TI Cox
EPIC Primarilystatic Primarily Mostly static All hazards determined [tanium
software and indicated explicitly
by the compiler

ELE 655 —Fall 2015

© t]

B A N9 ll 11

« Package multiple operations into one instruction
 Static scheduling

Example VLIW processor:
» One integer instruction (or branch)
« Two independent floating-point operations
« Two independent memory references

Must be enough parallelism in code to fill the available slots

BEIGES LD

ELE 655 —Fall 2015 5 ©tj

e| lali - 1

* VLIW

« Disadvantages

« Statically finding parallelism
* May be difficult to find this in a basic block
* Global scheduling algorithms

» Code size
* Need to do a lot of loop unrolling - larger code size
* Unused slots create wasted memory space (assuming aligned words)

* No hazard detection hardware
» Functional units forced to work in lockstep

* Binary code compatibility

* Instructions are tightly coupled to both instruction set and implementation
(numbers and types of functional units)

ELE 655 —Fall 2015 6 © tj

el lel| -

» Current processors

« Dynamically scheduled with speculation
add Multiple issue

« Simple 2 instruction issue
« Operate on half clock cycles

* More complex multiple issues requires
« Complex issue logic
« Wider buses to handle multiple transactions per cycle

« Ability to handle dependencies between instructions issued together
* Need to update tables in parallel

ELE 655 —Fall 2015 7 © tj

ARA N e 1A

» Current processors

Rearder buffer
From instruction unit

Wider CDB
Instruction Reg # r Data 1
queue Wider Operand bus
Integer and FP registers . .
Loadistore More complex issue logic
operations
Operand
Address unit Floating-point buses
operations
Load buffers]]
Cperation bus
Store 3
address 2 Reservation [
Store > 1 stations
data b Address
Memory unit
Load
data Common data bus (CDE)

ELE 655 —Fall 2015 8 ©tj

w - _ ‘ ' Iy AT

'\o.
LA . .

. . B = 13 . .
"'"' y ‘ ,- . _" I ¢ ‘n.b e T
s "’tr '} | IR f-'c .‘ o rt .
- _—y .

-1 P o R

* Multiple Issue Process

» Given a bundle of instructions to issue
« Limit the number of each type of instruction allowed
« Anything over the limit is broken out of the bundle and waits
« E.g.2L/S,3Add, 1FP

* Once the bundle is limited (but before the specific instruction is

known)
» Assign a ROB to each instruction
« Assign a RS for each execution unit to the bundle
 |f either are limited — break the bundle

* Analyze the dependencies between instructions in the bundle

« Update the ROB and RS based on dependencies

ELE 655 —Fall 2015 9 © tj

AN T

Multiple Issue Process — no speculation

Memory
Issues at Executesat access at Write CDB at
Iteration clock cycle clock cycle clock cycle clock cycle
number Instructions number number number number Comment
1 LD R2,0(R1) 1 2 3 4 First issue
1 DADDIU RZ2,RZ2,#1 1 5 6 Wait for LW
1 SD R2,0(R1) 2 3 7 Wait for DADDIU
1 DADDIU R1,R1,#8 2 3 4 Execute directly
1 BME RZ,R3,L00P 3 7 Wait for DADDIU
2 LD R2,0(R1) 4 8 9 10 Wait for BNE
2 DADDIU R2,R2,#1 4 11 12 Wait for LW
2 SD R2,0(R1) 5 9 13 Wait for DADDIU
2 DADDIU R1,R1,#8 5 8 9 Wait for BNE
2 BNE R2,R3,LO0P 6 13 Wait for DADDIU
3 LD R2,0(R1) 7 14 15 16 Wait for BNE
3 DADDIU R2,R2Z,#1 7 17 18 Wait for LW
3 SD R2,0(R1) 8 15 19 Wait for DADDIU
3 DADDIU R1,R1,#8 3 14 15 Wait for BNE
3 BNE R2,R3,LO0P 9 19 Wait for DADDIU
ELE 655 — Fall 2015 10

©tj

AN T

Multiple Issue Process — with speculation

Write

Issues Executes Readaccess CDBat Commits
Iteration atclock atclock at clock clock atclock
number Instructions number number number number number Comment
1 LD R2,0(R1) 1 2 3 4 5 First issue
1 DADDIU RZ,RZ,#1 1 5 6 7 Wait for LW
1 SD R2,0(R1) 2 3 7 Wait for DADDIU
1 DADDIU R1,R1,#8 2 3 4 8 Commit in order
1 BNE R2,R3,LO00P 3 7 8 Wait for DADDIU
2 LD R2,0(R1) 4 5 6 9 No execute delay
2 DADDIU R2,R2,#1 4 8 10 Wait for LW
2 S0 R2,0(R1) 5 6 10 Wait for DADDIU
2 DADDIU R1,R1,#8 5 6 7 11 Commit in order
2 BNE RZ,R3,LO0P 6 10 11 Wait for DADDIU
3 LD R2,0(R1) 7 8 9 10 12 Earliest possible
3 DADDIU R2,RZ2,#1 7 11 12 13 Wait for LW
3 SD R2,0(R1) 8 9 13 Wait for DADDIU
3 DADDIU R1,R1,#8 8 9 10 14 Executes earlier
3 BNE R2,R3,LO0P 9 13 14 Wait for DADDIU

ELE 655 —Fall 2015

11 ©tj

el lel| -

* Increasing Fetch Bandwidth

» Reduce the delays associated with branch calculations

« Branch Target Buffer

« Buffer of branch PC locations for TAKEN branches
* Includes the PC of the new (taken) location

» Each instruction is checked against the buffer
« If not in the buffer
* Not a branch
« Anot taken branch
« If in the buffer
* Itis ataken branch and the PC is loaded with the predicted PC

* - no branch delay
ELE 655 — Fall 2015 12 © tj

ARA N e 1A

« Branch Target Buffer
* Looks like a cache

Send PC to memory and
branch-target buffer
| PC of instruction to fetch
IF
Predicted PC
Number of
entries
in branch-
target
buffer
1D
No: instruction is In’:ﬁﬂzmn
not predicted to be Branch execution
branch; proceed normally predicted
taken or
Yes: then instruction is branch and predicted untaken 4
PC should be used as the next PC Mispredicted branch, Branch correctly
kill fetched instruction; predicted;
EX restart fetch at ather continue exacution
target; delete entry with no stalls
from target buffer

ELE 655 —Fall 2015 13 ©tj

B A N9 ll 11

.‘ '.‘ . 48

-
.
° "
A B -
. ’ ;"
.

« Branch Target Buffer

« Modification — Branch folding

 Instead of storing predicted PC, store 1 or more actual instructions
from the predicted location

» Provides the instruction immediately instead of at the next fetch
cycle

« Can lead to O cycle branches

ELE 655 —Fall 2015 14 ©tj

il ANy "V' Y35 f o™ \ ' . A L AT

f

0"‘ 0."’"#"' ; ‘
. : N3 .

)

INstructic “15 el A

 Return Address Prediction

» Procedure returns can be a significant portion of all branches
(>15%)

» These involve indirect jumps (location not known until run time)

» Since procedures can be called from many locations, the branch
target buffer is not very effective

* Create a small stack that pushes the PC on calls and pops the

address on returns
 If it is sufficiently deep = very accurate performance

ELE 655 —Fall 2015 15 © tj

 Return Address Prediction

ELE 655 —Fall 2015

70%

60% T

w
o
2

Misprediction frequency

20%

10% A

0%

Return address buffer entries
16

- Go

-~ m88ksim
-/ ccl

-0~ Compress
- Xlisp

-&- ljpeg

A Perl

©tj

B A N9 ll 11

« Multiple Issue

» Our instruction fetch function has become very complex

« Break it away from the rest of the pipeline and introduce a buffer
between the fetch logic and the pipeline

» Allows the fetch circuitry to operate while keeping the pipeline fed

ELE 655 —Fall 2015 17 ©tj

« Arm Cortex A8

» Dual Issue
 Statically Scheduled

FO F1 F2 DO D1 D2 D3 D4

Branch mispredict
penalty =13 cycles

EO E1 E2 E3 E4 E5

Instruction execute and load/store

Instruction
fetch
RAM 12-entry—_’ _
AGU + fetch Instruction decode
queue .
BTB
— GHB
512 entry B | |
i 8 entry Hijtlf)f OBtil?‘fer
Return stack y
ELE 655 — Fall 2015 18

|

5 || ALUMUL pipeo| BP
§- N update
5 :

3 : BP
& ALU pipe 1 pdéiie
3 .

= : BP
® r LS pipe O or 1 updaté

©tj

‘\-.J"“. ‘-.d‘

« Arm Cortex A8

DO D1 D2 D3 D4
Instruction decode
_’
Early L Dec/seq > —» > >
Dec —p
Dec queue Score+board RegFile
read/write ; : ID remap
issue logic
Early
Dec ——P Dec o —P —p —p
Pull next 2 Decode Queue Dynamic Opcode and
instructions Instructions Instructions Issue Register operands
from the cache line Sent to execution

ELE 655 —Fall 2015 " ©tj

.-.l.“.o .A“-

« Arm Cortex A8

EO E1 E2 E3 E4 ES

Instruction execute
Integer register write back

|
l ALU B8P
wWB
| Shft ﬂa-!-gs - Sat -’update-’ ALU Shared
> multiply Arithmetic / Multiply
S LJ| mMuL [f muL L MUL L e L) we pipe 0 Execution pipe
INST 0 o 1 2 3
— 7 &
o
3 ALU BP
INST 1 Q i
, & (| Shft B + B Sat —bup date_’ WB | ALU pipe 1
@ flags
%".
N Load/store
> | ALU B> LS pipeline » WB pipe 0 or 1

ELE 655 —Fall 2015 20 ©tj

I re-
-

- 9

« Arm Cortex A8

+ Ideal CPI=0.5

0O L2 stalls/instruction
H L1 stalls/instruction
— [Pipeline stalls/instruction

B M Ideal CPI

4 -
=
LO
©
=
@
£
. 3 m
()
Q.
192]
| O
o
>
o

2 4

1~ i i I i [

0 4

gzip vpr mcf crafty parser eon perlbmk gap vonex bzip2

ELE 655 —Fall 2015 21 ©tj

e Arm Cortex A9

« Dynamically scheduled with speculation
* Ideal CPI=0.5

2.254

1.75

1.5+
- I I I
| I 1il

gzip vpr mcf crafty parser eon perlbmk gap vortex bzip2 twolf

A9 performance/A8 performance

0.75

ELE 655 —Fall 2015 22

©tj

‘\-.J"“. ‘-.d‘

(four-way) 16-Byte pre-decode + macro-op
* + fusion, fetch buffer
v
'"sm o | 18-Entry instruction queue |

B
Ld

Multi-level BTB
Return address stack

A

hardware

Ld L

.
: 128-Entry 32 KB Inst. cache (four-way associative) |«
e Intel Core i7 AJ wE z

Complex Simple Simple Simple
Micro / macro-op | macro-op macro-op macro-op
) : decoder decoder decoder decoder
: P v v v
28-Entry micro-op loop stream detect buffer

Update committed register s e A —
register file 128-Entry reorder buffer
In order | v |
> 36-Entry reservation station
W 4 v v v v
ALU ALU Load Store Store ALU
shift shift | |address | |address | data shift
1 1 1
SSE SSE 2 v Y SSE
sn‘l‘_fge s:‘l‘ﬂ" Memory order buffer %9
o8bit | | 128it “128-bit
FMUL FMUL Store FMUL
FDIV FDIV & load FDIV
1 1 J
y v v
512-Entry unified ¢ 64-Entry data TLB | [32-KB dual-ported data 256 KB unified 12
L2TLB (4-way) »|(4-way associative) | | cache (8-way associative) ¥ cache (eight-way)

8 MB all core shared and inclusive L3 ——p Uncore arbiter (handles scheduling and
cache (16-way associative) < clock/power state differences)

ELE 655 —Fall 2015 23 ©tj

* Intel Core i7

3 -
25 4 What is ideal?

2 -

& 1.5+

1 -

0.5 A

0 -

S Ff® & & OF @ R & I T S NP N
& G @ @cﬁ,@ & %\Q,oé\o > R ?5,\0&6‘ @\\@0 PRI RGN N
S SN S S e

Q \;\0 +’b

ELE 655 —Fall 2015 24 ©tj

