
ELE 655

Microprocessor System Design

Section 3 – Data Level Parallelism

Class 1 – VLIW

2 © tjELE 655 – Fall 2015

DLP

• SIMD overview

• Leverage large parallel data problems

• Matrix oriented scientific computing

• Image and audio processing

• Can be more energy efficient

• Fewer instructions

• Simpler logic than Dynamic scheduling with speculation, …

Data Level Parallelism

3 © tjELE 655 – Fall 2015

DLP

• SIMD overview

• 3 variations

• Vector processors

• SIMD extensions to MIMD or SISD processors

• Graphics Processor Units (GPUs)

Data Level Parallelism

4 © tjELE 655 – Fall 2015

DLP

• SIMD overview

Data Level Parallelism

MIMD expansion = 2 cores / 2 yrs

SIMD expansion = 2x ops/ 4 yrs

5 © tjELE 655 – Fall 2015

DLP

• Vector Architecture

• Read sets of data into “vector” registers

• Operate on registers

• Store results back to memory

Data Level Parallelism

6 © tjELE 655 – Fall 2015

DLP

• Vector Architecture

• Memory accesses

• Memory naturally provides data serially

• Vector registers read/write data serially then operate in parallel

Data Level Parallelism

7 © tjELE 655 – Fall 2015

DLP

• Vector Architecture

Data Level Parallelism

8 registers
64 elements / register
64 bits / element

1 write port / register
2 read ports / register

32 gp registers
32 fp registers X-point switch

Fully pipelined

Pipelined
1 word/clk after latency

8 © tjELE 655 – Fall 2015

DLP

• Vector Architecture

• Instruction Set

• Fig 4.3

Data Level Parallelism

9 © tjELE 655 – Fall 2015

DLP

• Vector Architecture

• Instruction Example

L.D F0,a ; load scalar a
LV V1,Rx ; load vector X
MULVS.D V2,V1,F0 ; vector-scalar multiply
LV V3,Ry ; load vector Y
ADDVV V4,V2,V3 ; add
SV Ry,V4 ; store the result

• 6 instructions vs approximately 600 in MIPS for 64 iterations
• Even worse if we unroll loops

Data Level Parallelism

10 © tjELE 655 – Fall 2015

DLP

• Vector Architecture

• Execution time

• Length of operands

• Structural hazards between operations

• Data dependencies between operations

• VMIPS
• Execution units take 1 element / clock cycle

• Pipelineing execution time = fill + vector length ≅ vector length

Data Level Parallelism

11 © tjELE 655 – Fall 2015

DLP

• Vector Architecture

• Convoy

• Vector instructions that could potentially execute together

• Limited by structural hazards

• Limited by issue width

• We add the restriction one convoy must finish before the next starts

• Chaining
• Within a convoy:

• Vector operations start as soon as the first element (or any dependent element)

of its source operand are available

• Solves any RAW dependencies in a convoy

Data Level Parallelism

12 © tjELE 655 – Fall 2015

DLP

• Vector Architecture

• Chime

• Unit of time to execute one convoy

• Simplified to ignore fill, chaining delays, and issue delays

• Vector length of n, and m chimes

• Requires approximately m x n clock cycles

• Execution time = # of convoys X chime

Data Level Parallelism

13 © tjELE 655 – Fall 2015

DLP

• Vector Architecture

LV V1,Rx ;load vector X

MULVS.D V2,V1,F0 ;vector-scalar multiply

LV V3,Ry ;load vector Y

ADDVV.D V4,V2,V3 ;add two vectors

SV Ry,V4 ;store the sum

Convoys:

1 LV MULVS.D chaining allows V1 RAW dependency

2 LV ADDVV.D chaining allows V2 RAW dependency

3 SV

For 64 element vectors, requires 64 x 3 = 192 clock cycles

Data Level Parallelism

14 © tjELE 655 – Fall 2015

DLP

• Vector Architecture

• Overhead not included in chime measurements

• Issue width
• Single issue requires an extra clock for a second instruction , …

• Start up time
• Pipeline fill

• 6 clks FP add, 7 clks FP mult, 20 clks FP div, 12 for vector load

• Chaining delay
• Directly tied to start up time

Data Level Parallelism

15 © tjELE 655 – Fall 2015

DLP

• Vector Architecture – Enhancements

• Multiple Lanes

Data Level Parallelism

16 © tjELE 655 – Fall 2015

DLP

• Vector Architecture – Enhancements

• Multiple Lanes

• No inter-lane communication

• Optimize
• Performance vs. cost

• Clock speed vs. complexity

Data Level Parallelism

17 © tjELE 655 – Fall 2015

DLP

• Vector Architecture – Enhancements

• Vector Length Register

• Real code does not have data in nice 64 word segments

• Real code may not even know the vector length until run time

• VLR indicates the vector length

Data Level Parallelism

18 © tjELE 655 – Fall 2015

DLP

• Vector Architecture – Enhancements

• Strip Mining
• Use VLR to manage vector lengths > hardware configuration

• Break actual length into an integer number (n) of natural length + what’s left

• Execute the “what’s left” by setting VLR < natural

• Loop n times with VLR = natural

low = 0;

VL = (n % MVL); /*find odd-size piece using modulo op % */

for (j = 0; j <= (n/MVL); j=j+1) { /*outer loop*/

for (i = low; i < (low+VL); i=i+1) /*runs for length VL*/

Y[i] = a * X[i] + Y[i] ; /*main operation*/

low = low + VL; /*start of next vector*/

VL = MVL; /*reset the length to maximum vector length*/

}

Data Level Parallelism

19 © tjELE 655 – Fall 2015

DLP

• Vector Architecture – Enhancements

• Vector Mask Register

• Determines which elements in a vector actually get saved

• 1 bit for each word in the vector

• Operate in the vector as normal

• Only writeback results for words with the mask set

Data Level Parallelism

20 © tjELE 655 – Fall 2015

DLP

• Vector Architecture – Enhancements

• Vector Mask Register

• Use VMR to skip elements in the vector

• Consider:

for (i = 0; i < 64; i=i+1)

if (X[i] != 0)

X[i] = X[i] – Y[i];

• Can’t be vectorized because of the “if”

Data Level Parallelism

21 © tjELE 655 – Fall 2015

DLP

• Vector Architecture – Enhancements

• Vector Mask Register

• Use vector mask register to “disable” elements and allow the “if”

LV V1,Rx ;load vector X into V1

LV V2,Ry ;load vector Y

L.D F0,#0 ;load FP zero into F0

SNEVS.D V1,F0 ;sets VM(i) to 1 if V1(i)!=F0

SUBVV.D V1,V1,V2 ;subtract under vector mask

SV Rx,V1 ;store the result in X

• GFLOPS rate decreases!

Data Level Parallelism

22 © tjELE 655 – Fall 2015

DLP

• Vector Architecture – Enhancements

• Banked Memory

• We can execute a new calculation every clock cycle via pipelining

• But can we provide data at full clock rate

• Caching

• Memory banking
• Allow multiple loads and stores in parallel

• Scatter-Gather independent bank addressing

• Multiple processors independent instruction streams

• Large number of banks

• Cray 1 = 1024 banks

Data Level Parallelism

23 © tjELE 655 – Fall 2015

DLP

• Vector Architecture – Enhancements

• Striding

• How do we work with a multidimensional array structure
• In memory the array is linear (row major or column major)

• Subsequent element on the minor axis are separated by the major axis

length – stride

• Add a register to hold the stride value (computed at run time)

• Can lead to bank contention
• Separate stride accesses end up in the same bank stall

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑏𝑎𝑛𝑘𝑠

𝐿𝑒𝑎𝑠𝑡 𝑐𝑜𝑚𝑚𝑜𝑛 𝑚𝑢𝑙𝑡𝑖𝑝𝑙𝑒 (𝑆𝑡𝑟𝑖𝑑𝑒, # 𝑜𝑓 𝑏𝑎𝑛𝑘𝑠)
< 𝐵𝑎𝑛𝑘 𝑏𝑢𝑠𝑦 𝑡𝑖𝑚𝑒

Data Level Parallelism

24 © tjELE 655 – Fall 2015

DLP

• Vector Architecture – Enhancements

• Scatter-Gather

• Sparse matrices are very common

• Use a vector to indicate the non-zero element of the matrix

for (i=0; i<n; i++)

A[K[i]] = A[K[i]] + C[M[i]];

Where A and C are the matrices and K and M are vectors of the non-zero elements

• Special instructions LVI, SVI to gather and scatter
• Use one operand (non-zero element vector) as an index to a base address

Data Level Parallelism

25 © tjELE 655 – Fall 2015

DLP

• Vector Architecture – Enhancements

• Scatter-Gather
• Add elements of two sparse matrices

Ra, Rc, Rk, Rm are the base address for the vectors

LV Vk, Rk ; load Rk

LVI Va, (Ra + Vk) ; load A[K[]] – gather

LV Vm, Rm ; load Rm

LVI Vc, (Rc + Vm) ; Load C[M[]] – gather

ADDVV.D Va, Va, Vc ; add vectors

SVI (Ra + Vk), Va ; store A[K[]] - scatter

Data Level Parallelism

26 © tjELE 655 – Fall 2015

DLP

• Vector Processor – modern example

• Intel Phi Co-processor

Data Level Parallelism

27 © tjELE 655 – Fall 2015

DLP

• Vector Processor – modern example

• Intel Phi Co-processor

Data Level Parallelism

28 © tjELE 655 – Fall 2015

DLP

• Vector Processor – modern example

• Intel Phi Co-processor

Data Level Parallelism

29 © tjELE 655 – Fall 2015

DLP

• Vector Processor – modern example

• Intel Phi Co-processor

Data Level Parallelism

30 © tjELE 655 – Fall 2015

DLP

• Vector Processor – modern example

• Intel Phi Co-processor

• 16 x 32bit

or

• 8 x 64bit

Data Level Parallelism

31 © tjELE 655 – Fall 2015

DLP

• Vector Processor – modern example

• Intel Phi Co-processor

Data Level Parallelism

2 operands x 16 units

Only bottom 8 bits used in 64bit mode

1 bit/word

32 © tjELE 655 – Fall 2015

DLP

• Vector Processor – modern example

• Intel Phi Co-processor
• Vector Mask

Data Level Parallelism

33 © tjELE 655 – Fall 2015

DLP

• Vector Processor – modern example

• Intel Phi Co-processor

• Peak performance

Clock freq x 8 lanes (64bit mode) x 2 FLOPS/clock x # cores

1Ghz x 8 lanes x 2 Flops/clock = 16Gflops / core

60 cores 960Gflops

Data Level Parallelism

34 © tjELE 655 – Fall 2015

DLP

• Vector Processor – modern example

• Intel Phi Co-processor
• Swizzle / Broadcast

• 4 word permutations (16 bytes in 32 bit mode, 32 bytes in 64 bit mode)

• Convers when the operand is loaded

Data Level Parallelism

35 © tjELE 655 – Fall 2015

DLP

• Vector Processor – modern example

• Intel Phi Co-processor

• SP transcendental instructions supported in hardware
• Exponent

• Logarithm

• Reciprocal

• Square root operations.

Data Level Parallelism

36 © tjELE 655 – Fall 2015

DLP

• Vector Processor – modern example

• Intel Phi Co-processor

• Standard instruction format

vop v0{mask}, v1, v2|mem{swizzle},

Data Level Parallelism

