
ELE 655

Microprocessor System Design

Section 3 – Data Level Parallelism

Class 3 – GPU

2 © tjELE 655 – Fall 2015

DLP

• GPU overview

• Massively parallel HW solution to massively parallel Data problems

• Originated as co-processors for Graphics applications

• Converged with other SIMD platforms as the instructions set and

hardware became more capable of control operations

• Cheapest path to huge numbers of parallel processors

Data Level Parallelism

3 © tjELE 655 – Fall 2015

DLP

• GPU Basics

• Thread

• In normal computing terms this is a series of instructions that can be run

independently

• In GPU world – sequence of instructions that can be independently

executed in a single SIMD lane

• Each with its own PC and registers

• E.g. – one iteration of the body of a parallelized loop

Data Level Parallelism

4 © tjELE 655 – Fall 2015

DLP

• GPU Basics

• SIMD Thread (CUDA Thread)

• A group of 32 threads

• Often just referred to as a thread

• Eg. Thread 14, instruction 12

Data Level Parallelism

5 © tjELE 655 – Fall 2015

DLP

• GPU Basics

• Thread Block

• A group of 16 SIMD Threads

• Can communicate between threads via local memory

Data Level Parallelism

6 © tjELE 655 – Fall 2015

DLP

• GPU Basics

• Grid

• A group of 16 Thread Blocks

Data Level Parallelism

7 © tjELE 655 – Fall 2015

DLP

• GPU Basics

• Example

• Vector-vector multiply with 8192 elements / vector

• Fully independent

• SIMD thread – 32 independent elements

• Thread block – 16 SIMD threads

 512 elements / thread block

• 8192/512 = 16 Thread blocks = 1 Grid

Data Level Parallelism

8 © tjELE 655 – Fall 2015

DLP

• GPU Basics

• Multi-threaded SIMD processor

• Multi-lane processor (16, 32 lanes)

• Load/Store, FPU

• Operates on 1 Thread Block

• Large register file
• 16 SIMD Threads/Block x 32 threads/SIMD Thread x 64 registers thread =

32,768 32-bit registers

• Local memory

Data Level Parallelism

9 © tjELE 655 – Fall 2015

DLP

• GPU Basics

• Multi-threaded SIMD processor – 16 lanes

Data Level Parallelism

10 © tjELE 655 – Fall 2015

DLP

• GPU Basics

• Operation

• Grid is created by the compiler

• Thread Block Scheduler
• Determines how many thread blocks are needed

• Assigns thread blocks from the grid to multithreaded SIMD processors

• Continues until all blocks are assigned

• Thread Scheduler (in each multithreaded SIMD processor)
• Warp Scheduler in Nvidia

• Selects the next thread (instruction) to execute

• Based on data and resource availability

• Dynamic Scheduling

Data Level Parallelism

11 © tjELE 655 – Fall 2015

DLP

• GPU Basics

• Operation

• Execution
• Each multithreaded SIMD processor must

• Load 32 elements of each of 2 vectors

• Perform the required operation

• Store 32 elements of the result

Data Level Parallelism

12 © tjELE 655 – Fall 2015

DLP

• GPU Basics

• Operation

Data Level Parallelism

13 © tjELE 655 – Fall 2015

DLP

• GPU Basics

• Operation

Data Level Parallelism

14 © tjELE 655 – Fall 2015

DLP

• GPU Basics

• Implementation

• Nvidia – Fermi GTX 480

• 16 SIMD processors

• 16 SIMD Lanes

• Local and Global Memory

• Thread Block Scheduler
• GigaThread

Data Level Parallelism

15 © tjELE 655 – Fall 2015

DLP

• GPU ISA

• Instruction set is an abstraction instead of direct implementation
• PTX – Parallel Thread Execution

• Simplifies compiler compatibility across HW variations

• Usually map 1-1 with the HW instructions

• Can represent multiple HW instructions in 1 PTX instruction

• Uses virtual registers
• Compiler assigns resources

• Format
• Opcode.type d,a,b,d

• 8/16/32/64 bit operands

• 1 bit predicate registers

Data Level Parallelism

16 © tjELE 655 – Fall 2015

DLP

• GPU ISA

Data Level Parallelism

17 © tjELE 655 – Fall 2015

DLP

• GPU ISA

• CUDA example DAXPY

• Format for a function call
• Name <<< dimGrid, dimBlock>>> (… param list…)

• Identifiers
• Each block has an identifier – blockIdx

• Each thread has an identifier inside the block – threadIdx

• BlockDim = dimBlock

Data Level Parallelism

18 © tjELE 655 – Fall 2015

DLP

• GPU ISA

• PTX example DAXPY – 1 thread

Data Level Parallelism

R8 now points to my
thread ID in memory
relative to the base address

19 © tjELE 655 – Fall 2015

DLP

• GPU ISA

• Conditional Branching

• Each Lane as its own mask bit to determine whether to execute the

current instruction or not

• Each Thread has its own stack to keep track of branch return addresses

• Assembler optimizes
• Use branch instructions for complex situations

• Branch diverges when only some lanes branch

• Use predicates for simple situations

• Only lanes with predicate=1 execute

Data Level Parallelism

20 © tjELE 655 – Fall 2015

DLP

• GPU ISA

• Conditional Branching

• Regardless of how the branch is handled – all lanes stay synchronized to

the same instructions

• This leads to potential inefficiency when few lanes are actually executing

Data Level Parallelism

21 © tjELE 655 – Fall 2015

DLP

• GPU ISA

• Conditional Branching
if (X[i] != 0)

X[i] = X[i] – Y[i]

else X[i] = Z[i]

Data Level Parallelism

22 © tjELE 655 – Fall 2015

DLP

• GPU Memory

• Each thread (lane) has a private memory block

• Private Memory
• Off chip

• Not shared with anyone

• Holds stack, private variables, …

• Can be cached to speed up access

• Each Multithreaded SIMD processor has local memory

• Local Memory
• On chip

• Shared by SIMD lanes

• Not shared across multithreaded SIMD processors

• Allocates portions of Local Memory to each thread block
• Private to a thread block

Data Level Parallelism

23 © tjELE 655 – Fall 2015

DLP

• GPU Memory

• External memory available to the whole GPU

• GPU memory
• Available to the Host for R/W

• Pipelined accesses by the GPU

• Latency hidden by multithreading

• Special memory hardware
• Coalesce memory accesses from individual threads in a SIMD thread

into a single pipelined access

• Hold some requests to group requests to the same open DRAM page

Data Level Parallelism

24 © tjELE 655 – Fall 2015

DLP

• GPU Memory

Data Level Parallelism

25 © tjELE 655 – Fall 2015

DLP

• FERMI – multithreaded SIMD processor core

• Dual scheduler – dual dispatch

• 2 sets of 16 Lanes

• 16 L/S units

• 4 Special Function Units (SFU)

• Looks a little like a superscalar with 2 ALU, 1 L/S and 1 SFU
• But here we are executing 32 threads in each of 2 of the execution units

in 2 clock cycles **

Data Level Parallelism

26 © tjELE 655 – Fall 2015

DLP

• FERMI – multithreaded SIMD processor core

Data Level Parallelism

27 © tjELE 655 – Fall 2015

DLP

• FERMI – multithreaded SIMD processor core

Data Level Parallelism

28 © tjELE 655 – Fall 2015

DLP

• FERMI – multithreaded SIMD processor core

• Fast Double-Precision Floating Point
• 2x single precision

• Caches for GPU memory
• L1 Data and Memory

• Memory array is shared with Local Memory

• Split is programmable – 16KB/48KB or 48KB/16KB

• L2 Unified
• 768KB

• 64 bit addressing
• All memories

Data Level Parallelism

29 © tjELE 655 – Fall 2015

DLP

• FERMI – multithreaded SIMD processor core

Data Level Parallelism

30 © tjELE 655 – Fall 2015

DLP

• GPU Vs. Vector Processor

Data Level Parallelism

