ELE 655
Microprocessor System Design

Section 4 — Thread Level Parallelism

Class 1 — Intro
Cache Coherence

BAsesindiitiio

« Background

 Limitations on Clock frequency

* Need for more performance

 Increasing independent processing requests
« Shift to the Cloud

» Replication of HW vs Innovation

- Thread Level Parallelism

ELE 655 —Fall 2015 2 ©tj

B A N9 ll 11

« Background

 Thread Level Parallelism

» Defined at a higher level than DLP
« Controlled by OS with a single memory space

» Multiple processes, each with multiple threads
« Separate threads - separate program counters

» Inter process communication
« Shared data

Instead of context switching on a single processor

- MIMD

ELE 655 —Fall 2015 3 ©tj

AN T

" "
| 1 51’ ~ “‘I) .
) ' i g a

« Background

» Software models

« Multiple threads to achieve a single task
parallel processing

« Multiple threads to achieve different tasks
» Potentially from different users
« Single application split across processors
* Multiple applications running independently

request level parallelism

multiprogramming

ELE 655 —Fall 2015 4 ©tj

BAsesindeitiiido

* MIMD

» Multiple processors on a single chip
Multicore

» Multiple processors on separate chips
« Some of which may be multi-core

Multiprocessor

« Multi-threading on a single core (SMT)

ELE 655 —Fall 2015 5 ©tj

BAsesindiitiio

« Multi-processor Architecture

* Need n threads to take full advantage of n processors

« Amount of computation assigned to a thread — grain size
 TLP — 100K+ instructions / thread

» Shared memory

ELE 655 —Fall 2015 6 ©tj

Multi-processor Architecture

« Symmetric Multiprocessor
» Relatively fewer processors
» Centralized shared memory
* Unified memory access (UMA)

Processor Processor Processor Processor
One or One or COne or One or Private
more levels more levels more levels more levels caches
of cache of cache of cache of cache
T L T 1

Shared cache
Main memory I 1/0 system l
ELE 655 —Fall 2015 7

© t]

‘\-.J"“. ‘-.d‘

. g "

« Multi-processor Architecture

 Distributed Shared Memory Multiprocessor
« Relatively larger numbers of processors
e Distributed memory (NUMA)
 Interconnect network

Multicore Multicore
MP MP

Memory I»;@ Memory I»;@ Memory I»;[D Memory r I}

Interconnection network

Multicore Multicore
MP MP

ELE 655 —Fall 2015 8 ©tj

 Parallel Processing

* Metrics

« Example pg 349

ELE 655 —Fall 2015 9 ©tj

 Parallel Processing

* Metrics

« Example pg 350

ELE 655 —Fall 2015 10 ©tj

 Parallel Processing

» Primary bottlenecks to performance
« Memory Access

» Access to shared information (memory)

ELE 655 —Fall 2015 11 ©tj

ARA N e 1A

L J
+
"

n; !‘ !\‘\’ ~ "'I)

i g

« SMP and Centralized Memory

» Private Data
» Used only with one processor
« Cached locally

« Shared Data
« Used by multiple processors
« Shared in memory
» Cached locally to speed up access
« But may be replicated in multiple locations

« - Coherency issues

ELE 655 —Fall 2015 .. ©tj

ARA N e 1A

« Cache Coherency

» Global State
« The value of a memory location held in main memory

« Local State
« The value of a memory location held in a local memory
« May be multiple local values — 1 in each local memory

L1, L2 may be local (private) — L3 may be global (shared)

ELE 655 —Fall 2015 13 ©tj

‘\-.J"“. ‘-.d‘

\. !YE\\;-

Memory
Cache contents Cache contents contents for
Time Event for processorA for processorB location X
(0 |
| Processor A reads X | |
2 Processor B reads X | | |
3 Processor A stores () 0 | 0
mnto X

ELE 655 —Fall 2015 14 ©tj

u-c

- - -
.

Lol

| .ri ' - ' L))

'
"

1 a2a%=) r ? -"“

Cache Coherency

» Coherence

« All reads by any processor must return the most recently written value

» Writes to the same location by any two processors are seen in the same
order by all processors (write serialization)

» Consistency

* When a written value will be returned by a read (delay)

« |If a processor writes location A followed by location B, any processor that
sees the new value of B must also see the new value of A

ELE 655 —Fall 2015 15 © tj

BAsesindiitiio

B ’o | T ' - =1 . '
. T - -

d LEVE

« Cache Coherency

« Migration

« Copy memory to a local cache for speed of access
« Coherency ensures the new data is correct

» Replication

« Each processor can have its own copy of data
« Reduces memory access requests

ELE 655 —Fall 2015 16 ©tj

ARA N e 1A

\ - .\‘\
\ t _ -
K

« Cache Coherency Protocols

» Directory Based
* SMP - Central location (converged memory) used to store all sharing
. IIZr)“cSOM — distributed directories

* Snooping

« Each cache monitors all memory activity — looks for requests to items it
has in its local memory

ELE 655 —Fall 2015 17 ©tj

“.uautu....a-‘

SOTRIE IR

o , | _
! ,ﬂ‘ rt *\,.gd' Pa " z’?:.

« Snooping Coherency Protocols

* Write Invalidate

* Processor has exclusive access to a memory value before it overwrites it
» Invalidates all other copied prior to write
« Use the bus structure to maintain serialization ????

Contents of Contents of Contents of

Processor activity Bus activity processor A's cache processor B's cache memory location X
0

Processor A reads X Cache miss for X 0

Processor B reads X Cache miss for X 0 0 0

Processor A writesa 1 Invalidation for X] 0

to X

Processor B reads X Cache miss for X] |]

ELE 655 —Fall 2015 18 © tj

« Snooping Coherency Protocols

« Write Update

« Update all copies of the memory on a write

* Very bandwidth intensive

ELE 655 —Fall 2015 " ©tj

ARA N e 1A

\ - .\‘\
\ t _ -
K

« Snooping Coherency Protocols

* |nvalidate

» Writing Processor
* Broadcast an invalidate on the bus

» All processors “snoop” on the bus
» Watching all addresses for writes
» Checking to see if they have a copy
* |If yes, invalidate their copy

* In a bus system
 Bus access limitations ensure serialization

ELE 655 —Fall 2015 20 ©tj

-
\

e - "‘ 121 ' nuou Webaa b

'\o.

ol'bri‘r 0} . . | —'”'. " "’“""(’ oA
. : 0' - o"‘ .. ,° - uo'

Th :ﬁ}rlz“ Paralle ' | f'1 '

: il

Snooping Coherency Protocols

* Finding data

» Write through Caches
« Data is always available at the common memory level
« What about write buffers — need to treat them as still being in the cache

» Write back Caches
* Reguested data may be in someone else's local cache
» All processors snoop on the bus
* When the processor with a dirty copy of the block sees the request for the
block on the bus it:
aborts the request to the higher level of memory
provides the data to the bus (and ultimately the requester)
« Complication
* may take longer than just getting the block from the higher level cache
» Multi-processor system use writeback because the improvement in bus
utilization associated with WB exceeds this penalty

ELE 655 —Fall 2015 o © tj

61'
..

AN T

e r »Sa
B

n‘ r‘ e\'\‘.'.

« Snooping Coherency Protocols

« Marking data

Valid and Dirty act as before
Exclusive
* Indicates that only one copy exists

When a processor sees another copy requested it updates it’'s block
state to shared

Exclusive writes do not generate invalidates
« But they do update their own state to exclusive

ELE 655 —Fall 2015 22 ©tj

ARA N e 1A

« Snooping Controller

« Simple 3 state controller
 Invalid, shared, modified

State of
addressed Type of

Request Source cache block cache action Function and explanation

Read hit Processor Shared or MNormnal hit Read data in local cache.

modified

Read miss Processor Inwvalid Normal miss Place read miss on bus.

Read miss Processor Shared Replacement Address conflict miss: place read miss on bus.

Read miss Processor MNodified Replacement Address conflict miss: write-back block. then place read miss on
bus.

Write hit Processor Modified Nommal hit Write data in local cache.

Write hit Processor Shared Coherence Place invalidate on bus. These operations are often called
upgrade or owrnership misses, since they do not fetch the data but
only change the state.

Write miss Processor Invalid MNormal miss Place write miss on bus.

Write miss Processor Shared Replacement Address conflict miss: place write miss on bus.

Write miss Processor Modified Replacement Address conflict miss: write-back block. then place write miss on
bus.

Read miss Bus Shared No action Allow shared cache or memory to service read miss.

Read miss Bus Modified Coherence Attempt to share data: place cache block on bus and change state
to shared.

Invalidate Bus Shared Coherence Attempt to write shared block: invalidate the block.

Write miss Bus Shared Coherence Attempt to write shared block: invalidate the cache block.

Write miss Bus Modified Coherence Attempt to write block that is exclusive elsewhere: write-back the

cache block and make its state invalid in the local cache.

ELE 655 —Fall 2015

23

©tj

ARA N e 1A

« Snooping Controller

« Simple 3 state controller
 Invalid, shared, modified

State of
addressed Type of

Request Source cache block cache action Function and explanation

Read hit Processor Shared or MNormnal hit Read data in local cache.

modified

Read miss Processor Inwvalid Normal miss Place read miss on bus.

Read miss Processor Shared Replacement Address conflict miss: place read miss on bus.

Read miss Processor MNodified Replacement Address conflict miss: write-back block. then place read miss on
bus.

Write hit Processor Modified Nommal hit Write data in local cache.

Write hit Processor Shared Coherence Place invalidate on bus. These operations are often called
upgrade or owrnership misses, since they do not fetch the data but
only change the state.

Write miss Processor Invalid MNormal miss Place write miss on bus.

Write miss Processor Shared Replacement Address conflict miss: place write miss on bus.

Write miss Processor Modified Replacement Address conflict miss: write-back block. then place write miss on
bus.

Read miss Bus Shared No action Allow shared cache or memory to service read miss.

Read miss Bus Modified Coherence Attempt to share data: place cache block on bus and change state
to shared.

Invalidate Bus Shared Coherence Attempt to write shared block: invalidate the block.

Write miss Bus Shared Coherence Attempt to write shared block: invalidate the cache block.

Write miss Bus Modified Coherence Attempt to write block that is exclusive elsewhere: write-back the

cache block and make its state invalid in the local cache.

ELE 655 —Fall 2015

24

©tj

CPU read

CPU read hit

Place read miss on bus

CPU write

Place write
miss on bus

Exclusive
(readwrite)

CPU write hit
CPU read hit

ELE 655 —Fall 2015

Place read
mlss on bus

Cache state transitions
based on requests from CPU

CPU write miss

Write-back cache block
Place write miss on bus

Write miss for this block

Invalidate for
this block

Shared
(read only)

CPU
read CPU
miss read
u miss
S
a2 @
&
ge 8
=
213
Write miss = |®
for this block

Read miss

for this block Cache state transitions based
on requests from the bus

25 © tj

« Snooping Controller — issues

« Operations are not atomic
» “things” can happen between bus transactions
» Create atomic bus accesses

ELE 655 —Fall 2015 26 ©tj

« Snooping Controller — extensions

* Add an exclusive-clean state
« MESI (Modified, Exclusive, Shared, Invalid)
« On write — no invalidate generated

« Add an owned state
- MOESI
 Indicates the block is in the cache and dirty
« Used when the cache is providing updates instead of main memory

ELE 655 —Fall 2015 27 ©tj

