
ELE 655

Microprocessor System Design

Section 4 – Thread Level Parallelism

Class 1 – Intro

Cache Coherence

2 © tjELE 655 – Fall 2015

TLP

• Background

• Limitations on Clock frequency

• Need for more performance

• Increasing independent processing requests

• Shift to the Cloud

• Replication of HW vs Innovation

 Thread Level Parallelism

Thread Level Parallelism

3 © tjELE 655 – Fall 2015

TLP

• Background

• Thread Level Parallelism

• Defined at a higher level than DLP

• Controlled by OS with a single memory space

• Multiple processes, each with multiple threads

• Separate threads separate program counters

• Inter process communication
• Shared data

• Instead of context switching on a single processor

 MIMD

Thread Level Parallelism

4 © tjELE 655 – Fall 2015

TLP

• Background

• Software models

• Multiple threads to achieve a single task

parallel processing

• Multiple threads to achieve different tasks
• Potentially from different users

• Single application split across processors

• Multiple applications running independently

request level parallelism

multiprogramming

Thread Level Parallelism

5 © tjELE 655 – Fall 2015

TLP

• MIMD

• Multiple processors on a single chip

Multicore

• Multiple processors on separate chips
• Some of which may be multi-core

Multiprocessor

• Multi-threading on a single core (SMT)

Thread Level Parallelism

6 © tjELE 655 – Fall 2015

TLP

• Multi-processor Architecture

• Need n threads to take full advantage of n processors

• Amount of computation assigned to a thread – grain size
• TLP – 100K+ instructions / thread

• Shared memory

Thread Level Parallelism

7 © tjELE 655 – Fall 2015

TLP

• Multi-processor Architecture

• Symmetric Multiprocessor
• Relatively fewer processors

• Centralized shared memory

• Unified memory access (UMA)

Thread Level Parallelism

8 © tjELE 655 – Fall 2015

TLP

• Multi-processor Architecture

• Distributed Shared Memory Multiprocessor
• Relatively larger numbers of processors

• Distributed memory (NUMA)

• Interconnect network

Thread Level Parallelism

9 © tjELE 655 – Fall 2015

TLP

• Parallel Processing

• Metrics

• Example pg 349

Thread Level Parallelism

10 © tjELE 655 – Fall 2015

TLP

• Parallel Processing

• Metrics

• Example pg 350

Thread Level Parallelism

11 © tjELE 655 – Fall 2015

TLP

• Parallel Processing

• Primary bottlenecks to performance

• Memory Access

• Access to shared information (memory)

Thread Level Parallelism

12 © tjELE 655 – Fall 2015

TLP

• SMP and Centralized Memory

• Private Data
• Used only with one processor

• Cached locally

• Shared Data
• Used by multiple processors

• Shared in memory

• Cached locally to speed up access

• But may be replicated in multiple locations

• Coherency issues

Thread Level Parallelism

13 © tjELE 655 – Fall 2015

TLP

• Cache Coherency

• Global State
• The value of a memory location held in main memory

• Local State
• The value of a memory location held in a local memory

• May be multiple local values – 1 in each local memory

• L1, L2 may be local (private) – L3 may be global (shared)

Thread Level Parallelism

14 © tjELE 655 – Fall 2015

TLP

• Cache Coherency

Thread Level Parallelism

15 © tjELE 655 – Fall 2015

TLP

• Cache Coherency

• Coherence

• All reads by any processor must return the most recently written value

• Writes to the same location by any two processors are seen in the same
order by all processors (write serialization)

• Consistency

• When a written value will be returned by a read (delay)

• If a processor writes location A followed by location B, any processor that
sees the new value of B must also see the new value of A

Thread Level Parallelism

16 © tjELE 655 – Fall 2015

TLP

• Cache Coherency

• Migration

• Copy memory to a local cache for speed of access
• Coherency ensures the new data is correct

• Replication

• Each processor can have its own copy of data
• Reduces memory access requests

Thread Level Parallelism

17 © tjELE 655 – Fall 2015

TLP

• Cache Coherency Protocols

• Directory Based

• SMP – Central location (converged memory) used to store all sharing
info

• DSM – distributed directories

• Snooping

• Each cache monitors all memory activity – looks for requests to items it
has in its local memory

Thread Level Parallelism

18 © tjELE 655 – Fall 2015

TLP

• Snooping Coherency Protocols

• Write Invalidate

• Processor has exclusive access to a memory value before it overwrites it
• Invalidates all other copied prior to write
• Use the bus structure to maintain serialization ????

Thread Level Parallelism

19 © tjELE 655 – Fall 2015

TLP

• Snooping Coherency Protocols

• Write Update

• Update all copies of the memory on a write

• Very bandwidth intensive

Thread Level Parallelism

20 © tjELE 655 – Fall 2015

TLP

• Snooping Coherency Protocols

• Invalidate

• Writing Processor
• Broadcast an invalidate on the bus

• All processors “snoop” on the bus
• Watching all addresses for writes
• Checking to see if they have a copy
• If yes, invalidate their copy

• In a bus system
• Bus access limitations ensure serialization

Thread Level Parallelism

21 © tjELE 655 – Fall 2015

TLP

• Snooping Coherency Protocols

• Finding data

• Write through Caches
• Data is always available at the common memory level
• What about write buffers – need to treat them as still being in the cache

• Write back Caches
• Requested data may be in someone else's local cache
• All processors snoop on the bus

• When the processor with a dirty copy of the block sees the request for the
block on the bus it:

aborts the request to the higher level of memory
provides the data to the bus (and ultimately the requester)

• Complication
• may take longer than just getting the block from the higher level cache
• Multi-processor system use writeback because the improvement in bus

utilization associated with WB exceeds this penalty

Thread Level Parallelism

22 © tjELE 655 – Fall 2015

TLP

• Snooping Coherency Protocols

• Marking data

• Valid and Dirty act as before
• Exclusive

• Indicates that only one copy exists

• When a processor sees another copy requested it updates it’s block
state to shared

• Exclusive writes do not generate invalidates
• But they do update their own state to exclusive

Thread Level Parallelism

23 © tjELE 655 – Fall 2015

TLP

• Snooping Controller

• Simple 3 state controller
• Invalid, shared, modified

Thread Level Parallelism

24 © tjELE 655 – Fall 2015

TLP

• Snooping Controller

• Simple 3 state controller
• Invalid, shared, modified

Thread Level Parallelism

25 © tjELE 655 – Fall 2015

TLP

• Snooping Controller

Thread Level Parallelism

26 © tjELE 655 – Fall 2015

TLP

• Snooping Controller – issues

• Operations are not atomic
• “things” can happen between bus transactions

• Create atomic bus accesses

Thread Level Parallelism

27 © tjELE 655 – Fall 2015

TLP

• Snooping Controller – extensions

• Add an exclusive-clean state
• MESI (Modified, Exclusive, Shared, Invalid)

• On write – no invalidate generated

• Add an owned state
• MOESI

• Indicates the block is in the cache and dirty

• Used when the cache is providing updates instead of main memory

Thread Level Parallelism

