

CY62512V

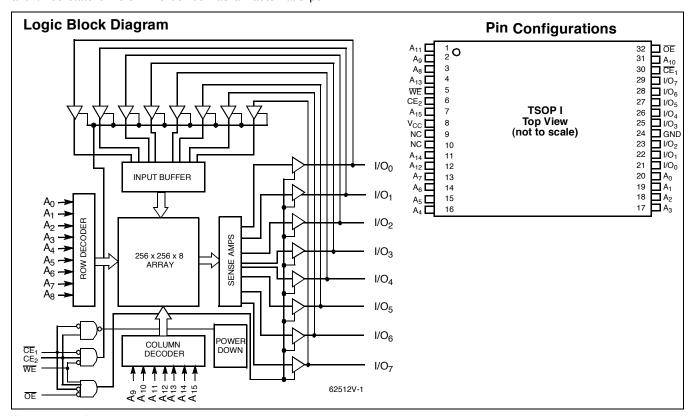
Features

- · 2.7V-3.6V operation
- · CMOS for optimum speed/power
- Low active power (70 ns, LL version)
 - 144 mW (max.)
- · Low standby power (70 ns, LL version)
 - 54 μW (max.)
- · Automatic power-down when deselected
- · TTL-compatible inputs and outputs
- Easy memory expansion with CE₁, CE₂, and OE options

Functional Description

The CY62512V is a high-performance CMOS static RAM organized as 65,536 words by 8 bits. Easy memory expansion is provided by an active LOW chip enable (\overline{CE}_1) , an active HIGH chip enable (CE_2), an active LOW output enable (\overline{OE}), and three-state drivers. This device has an automatic pow-

64K x 8 Static RAM


er-down feature that reduces power consumption by more than 99% when deselected.

Writing to the device is accomplished by taking chip enable one (\overline{CE}_1) and write enable (\overline{WE}) inputs LOW and chip enable two (CE₂) input HIGH. Data on the eight I/O pins (I/O₀ through I/O₇) is then written into the location specified on the address pins (A_0 through A_{15}).

Reading from the device is accomplished by taking chip enable one (\overline{CE}_1) and output enable (\overline{OE}) LOW while forcing write enable (WE) and chip enable two (CE2) HIGH. Under these conditions, the contents of the memory location specified by the address pins will appear on the I/O pins.

The eight input/output pins (I/O₀ through I/O₇) are placed in a high-impedance state when the device is deselected (CE1 HIGH or CE₂ LOW), the outputs are disabled (OE HIGH), or during a write operation (CE₁ LOW, CE₂ HIGH, and WE LOW).

The CY62512V is available in standard 32-pin TSOP type I package.

Selection Guide

			CY62512V-55	CY62512V-70	
Maximum Access Time (ns)			55	70	
Maximum Operating Current			40 mA	40 mA	
Maximum CMOS Standby Current	Maximum CMOS Standby Current L				
	Com'l	LL	15 μΑ	15 μΑ	
	Ind'l	LL	30 μΑ	30 μΑ	

Shaded areas contain advance information.

Maximum Ratings

(Above which the useful life may be impaired. For user guidelines, not tested.) Storage Temperature-65°C to +150°C Ambient Temperature with Power Applied55°C to +125°C Supply Voltage on V_{CC} to Relative GND...... -0.5V to +4.6VDC Voltage Applied to Outputs in High Z State $^{[1]}$ -0.5V to V $_{\rm CC}$ +0.5V DC Input Voltage^[1].....-0.5V to V_{CC} +0.5V

Current into Outputs (LOW)	20 mA
Static Discharge Voltage(per MIL-STD-883, Method 3015)	>2001V
Latch-Up Current	.>200 mA

Operating Range

Range	Ambient Temperature ^[2]	v _{cc}
Commercial	0°C to +70°C	2.7V-3.6V
Industrial	-40C to +85C	

Electrical Characteristics Over the Operating Range

						62512V		
Parameter	Description	Test Condition	Min.	Typ. ^[3]	Max.	Unit		
V _{OH}	Output HIGH Voltage	V _{CC} = Min., I _{OH} = −1.0 mA			2.4			V
V _{OL}	Output LOW Voltage	$V_{CC} = Min., I_{OL} = 2.1mA$					0.4	V
V _{IH}	Input HIGH Voltage						V _{CC} + 0.3	V
V _{IL}	Input LOW Voltage ^[1]				-0.3		0.8	V
I _{IX}	Input Load Current	$GND \le V_I \le V_{CC}$	$GND \le V_1 \le V_{CC}$			±0.1	+1	μΑ
I _{OZ}	Output Leakage Current	$GND \le V_1 \le V_{CC}$, Output D	$GND \le V_1 \le V_{CC}$, Output Disabled				+1	μΑ
I _{CC}	V _{CC} Operating	V _{CC} = Max.,				20	40	mA
	Supply Current	$I_{OUT} = 0 \text{ mA},$ $f = f_{MAX} = 1/t_{RC}$	$I_{OUT} = 0 \text{ mÅ},$ $f = f_{MAX} = 1/t_{RC}$				40	mA
I _{SB1}	Automatic CE	Max. V_{CC} , $\overline{CE}_1 \ge V_{IH}$				15	300	μΑ
	Power-Down Current — TTL Inputs	$ \text{ or } CE_2 \leq V_{IL}, \\ V_{IN} \geq V_{IH} \text{ or } \\ V_{IN} \leq V_{IL}, f = f_{MAX} $				15	300	μΑ
I _{SB2}	Automatic CE	Max. V _{CC} ,		L		0.4	100	μΑ
	Power-Down Current — CMOS Inputs	$\overline{CE}_1 \ge V_{CC} - 0.3V$, or $CE_2 \le 0.3V$,	Com'l	LL		0.4	15	μΑ
	Civido inputo	$V_{IN} \ge V_{CC} - 0.3V$, or $V_{IN} \le 0.3V$, f=0	Ind	LL		0.4	30	μΑ

Capacitance^[4]

Parameter	Description	Test Conditions	Max.	Unit
C _{IN}	Input Capacitance	$T_A = 25^{\circ}C$, $f = 1$ MHz,	6	pF
C _{OUT}	Output Capacitance	$V_{CC} = 3.0V$	8	pF

Notes:

 V_{IL} (min.) = -2.0V for pulse durations of less than 20 ns. T_A is the "instant on" case temperature. Typical specifications are the mean values measured over a large sample size across normal production process variations and are taken at nominal conditions ($T_A = 25^{\circ}$ C, $V_{CC} = 3.0$ V). Parameters are guaranteed by design and characterization, and not 100% tested. Tested initially and after any design or process changes that may affect these parameters.

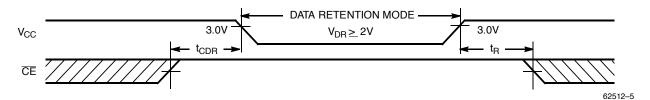
Switching Characteristics^[5] Over the Operating Range

			2V-55	6251	62512V-70	
Parameter	Description	Min.	Max.	Min.	Max.	Unit
READ CYCLE		•	•	•	•	•
t _{RC}	Read Cycle Time	55		70		ns
t _{AA}	Address to Data Valid		55		70	ns
t _{OHA}	Data Hold from Address Change	10		10		ns
t _{ACE}	CE ₁ LOW to Data Valid, CE ₂ HIGH to Data Valid		55		70	ns
t _{DOE}	OE LOW to Data Valid		25		35	ns
t _{LZOE}	OE LOW to Low Z ^[7]	10		10		ns
t _{HZOE}	OE HIGH to High Z ^[6, 7]		20		25	ns
t _{LZCE}	$\overline{\text{CE}}_1$ LOW to Low Z, CE_2 HIGH to Low $\text{Z}^{[7]}$	10		10		ns
t _{HZCE}	CE ₁ HIGH to High Z, CE ₂ LOW to High Z ^[6, 7]		20		25	ns
t _{PU}	CE₁ LOW to Power-Up, CE₂ HIGH to Power-Up	0		0		ns
t _{PD}	CE ₁ HIGH to Power-Down, CE ₂ LOW to Power-Down		55		70	ns
WRITE CYCLE	[8]	•	•		-	*
t _{WC}	Write Cycle Time	55		70		ns
t _{SCE}	CE₁ LOW to Write End, CE₂ HIGH to Write End	45		60		ns
t _{AW}	Address Set-Up to Write End	45		60		ns
t _{HA}	Address Hold from Write End	0		0		ns
t _{SA}	Address Set-Up to Write Start	0		0		ns
t _{PWE}	WE Pulse Width	40		55		ns
t _{SD}	Data Set-Up to Write End	25		30		ns
t _{HD}	Data Hold from Write End	0		0		ns
t _{LZWE}	WE HIGH to Low Z ^[7]	5		5		ns
t _{HZWE}	WE LOW to High Z ^[6,7]		20		25	ns

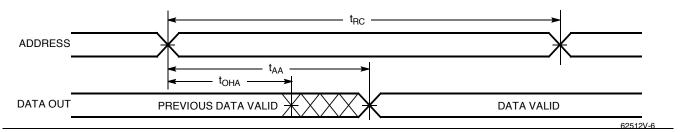
Shaded areas contain advance information.

Note:

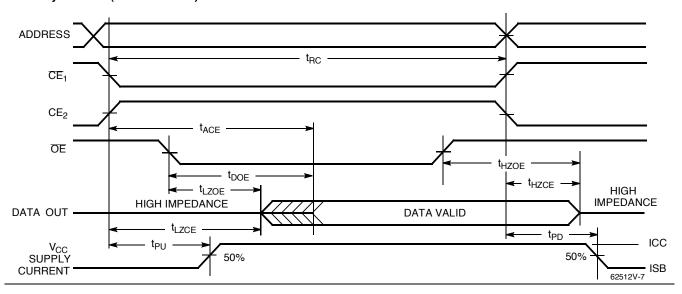
^{5.} Test conditions assume signal transition time of 5ns or less, timing reference levels of 1.5V, input pulse levels of 0 to 3.0V, and output loading of the specified I_{OL}/I_{OH} and 100pF load capacitance.


The internal write time of the memory is defined by the overlap of CE₁ LOW, CE₂ HIGH, and WE LOW. CE₁ and WE must be LOW and CE₂ HIGH to initiate a write, and the transition of any of these signals can terminate the write. The input data set-up and hold timing should be referenced to the leading edge of the signal that terminates

Data Retention Characteristics (Over the Operating Range for "L" and "LL" version only)


Parameter	Description			Conditions	Min.	Typ. [3]	Max.	Unit
V_{DR}	V _{CC} for Data Retention				2.0			V
I _{CCDR}	Data Retention Current		L	No input may exceed V _{CC} + 0.3V		0.4	80	μΑ
		Com'l	LL	$V_{CC} = V_{DR} = 3.0V,$ $CE \ge V_{CC} - 0.3V,$		0.4	12	μΑ
		Ind'l	LL	$V_{IN} \ge V_{CC} - 0.3V$ or		0.4	25	μΑ
t _{CDR} ^[4]	Chip Deselect to Data Retention Time			V _{IN} ≤ 0.3V	0			ns
t _R	Operation Recovery Time				t _{RC}			ns

Data Retention Waveform

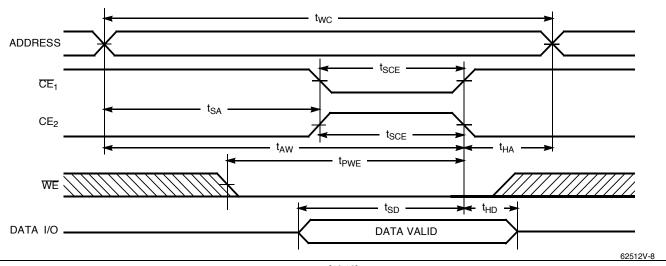


Switching Waveforms

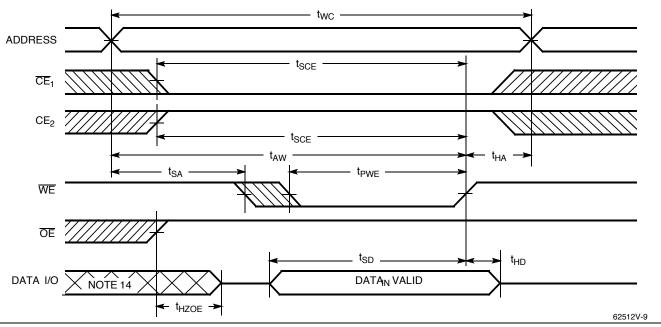
Read Cycle No.1^[9,10]

Read Cycle No. 2 (OE Controlled)[10,11]

- 9. Device is continuously selected. \overline{OE} , $\overline{CE}_1 = V_{IL}$, $\overline{CE}_2 = V_{IH}$.


 10. WE is HIGH for read cycle.

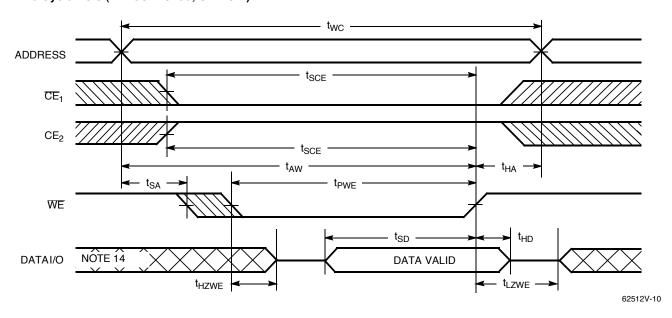
 11. Address valid prior to or coincide. Address valid prior to or coincident with $\overline{\text{CE}}_1$ transition LOW and CE_2 transition HIGH.



Switching Waveforms (continued)

Write Cycle No. 1 $(\overline{\text{CE}}_1 \text{ or CE}_2 \text{ Controlled})^{[12,13]}$

Write Cycle No. 2 (WE Controlled, $\overline{\text{OE}}$ HIGH During Write) $^{[12,13]}$



- Data I/O is high impedance if OE = V_{IH}.
 If CE₁ goes HIGH or CE₂ goes LOW simultaneously with WE going HIGH, the output remains in a high-impedance state.
 During this period the I/Os are in the output state and input signals should not be applied.

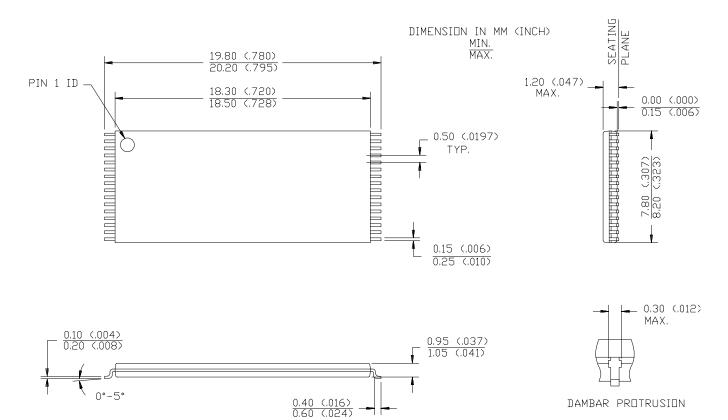
Switching Waveforms (continued)

Write Cycle No.3 ($\overline{\text{WE}}$ Controlled, $\overline{\text{OE}}$ LOW)[12,13]

Truth Table

CE ₁	CE ₂	OE	WE	1/O ₀ – 1/O ₇	Mode	Power
Н	Х	Х	Х	High Z	Power-Down	Standby (I _{SB})
Х	L	Х	Х	High Z	Power-Down	Standby (I _{SB})
L	Н	L	Н	Data Out	Read	Active (I _{CC})
L	Н	Х	L	Data In	Write	Active (I _{CC})
L	Н	Н	Н	High Z	Selected, Outputs Disabled	Active (I _{CC})

Ordering Information


Speed (ns)	Ordering Code	Package Name	Package Type	Operating Range
70	CY62512VLL-70ZC	Z32	32-Lead Thin Small Outline Package	Commercial

Document #: 38-00640

Package Diagram

32-Lead Thin Small Outline Package Z32

