
 CE1911 LABORATORY PROJECT

These homework and laboratory exercises are © Dr. Russ Meier, Milwaukee School of Engineering.
All Rights Reserved. Unauthorized reproduction in print or electronic form is prohibited.

SUMMARY

Memory is the ability to retain information indefinitely. In humans, memory retains patterns experienced by our
bodies through its sensors. These memories include reflexive responses learned from experiences such as touching
hot surfaces, as well as behaviors and information learned by repetition. Human memory is a complex system of
cell interconnections controlled by neurotransmitters. Reinforcement of stored information strengthens the
biological memory of it.

Computer memory retains voltage patterns representing binary numbers. Computer programmers and computer
architects attach meaning to these numbers and use them to direct calculation and computer behavior. For
example, a computer program written in C or Swift is a sequence of control and calculation steps that occur
through time. A compiler converts this sequence to binary numbers stored in program memory. The computer
executes each instruction by reading it from program memory, deciphering it into control signals for the functional
logic elements of the calculation engine, and storing any resulting data value from the instruction back to memory.

Computer architects have developed different types of computer memories. Each type works to optimize one or
more of these areas: speed, size, power, and cost.

Static memory does not lose its voltages as long as the systems supplies battery power to the memory circuit. This
adjective “static” describes this stability in memory. Retention of the data through time occurs because the output
of the memory feeds back to become its input again. This constantly reinforces the retained value and makes a
stable memory. The reinforcement circuit requires multiple gates and thus multiple transistors. Because this type
of memory does not forget, it does not need to be periodically refreshed to ensure data integrity. This optimizes
speed because the system does not need to take any units of time to refresh forgotten data.

Dynamic memory, on the other hand, optimizes size and thus provides larger memory circuits. Multiple gates do
not provide reinforcement of the remembered value. Instead, this type of memory stores logic-1 as electrical
charge on a single capacitor. It does not use multiple gates and thus uses minimal transistors per bit. The capacitor
immediately begins decaying the stored voltage toward logic-0 because of parasitic resistive-capacitive effects
caused in built material. The RC time constant determines the decay rate. Electric circuit theory courses will cover
the principles of RC time constants and capacitive decay. This type of memory forgets stored logic-1s because the
capacitor parasitically decays logic-1 to logic-0. Thus, a refresh controller must periodically refresh every bit of
memory. This controller is another piece of hardware that reads each memory bit and rewrites it. The controller
must move through all the memory bits before any bit forgets its stored logic-1. Thus, there is an operational
speed disadvantage. A computer program attempting to access memory may have to wait for the refresh
controller to finish working on the current set of bits before the memory system grants access to store data into
memory.

These laboratory exercises focus on static memories. You will build and simulate a schematic circuit for a 1-bit D
flip-flop with synchronous load and synchronous reset. You will then use the DFF component to build and simulate
a schematic circuit for a byte-sized register.

 CE1911 LABORATORY PROJECT

These homework and laboratory exercises are © Dr. Russ Meier, Milwaukee School of Engineering.
All Rights Reserved. Unauthorized reproduction in print or electronic form is prohibited.

NEW SIMULATION WORKFLOW

Simulation tools are an important part of modern engineering design workflow. These tools help to ensure that
designs meet functional and timing requirements. Computer-aided design suites often include multiple ways to
complete simulation. One technique uses input waveforms drawn by hand with a waveform editor. CE1901 used
this approach. A second technique uses a hardware description language to describe the input voltage changes
through time. Engineers call these hardware descriptions of test inputs test benches. CE1911 will use this
approach.

CE1901 ModelSim-Altera Simulation Workflow

 CE1911 ModelSim-Altera Simulation Workflow

ModelSim requires that engineers convert all designs to textual hardware descriptions before simulation. The
Quartus waveform editor completes this process automatically when it starts a simulation. Engineers must
complete this step when using VHDL testbenches.

Schematic Draw
Waveforms Simulate

VHDL Draw
Waveforms Simulate

Schematic Convert
to VHDL

Write
Testbench Simulate

VHDL Write
Testbench Simulate

 CE1911 LABORATORY PROJECT

These homework and laboratory exercises are © Dr. Russ Meier, Milwaukee School of Engineering.
All Rights Reserved. Unauthorized reproduction in print or electronic form is prohibited.

DELIVERABLES DUE AT THE END OF THE LABORATORY PERIOD

1. Demonstrate a working Quartus DFF schematic project and ModelSim simulation to the instructor.
2. Demonstrate a working Quartus REG8 schematic project and ModelSim simulation to the instructor.
3. Submit a laboratory report using the preferred method of your instructor that includes these sections:

a. Abstract: no more than one page describing the circuits and the work you have completed. This
section should use text to convey to the reader the foundational principles of the memory
circuits, outline the steps you took to complete the project, and summarize your results.

b. Circuits: a section that includes the Quartus schematic diagram, Quartus generated RTL diagram,
and any text you wish to include that demonstrates your understanding of the work.

c. Simulations: a section that documents the method of testing for each circuit. In other words,
given the inputs, how did you choose the number line you applied as voltages? Did it follow a
truth table? Was it random? Did you set arbitrary values? Why did you choose your method? You
must provide the ModelSim simulation waveforms for each circuit with hand-written, electronic
pen written, or typed text that demonstrates how you know the simulation verifies the circuit
operates correctly.

d. Conclusion: A short section that describes how the laboratory reinforced your learning of the
course material. Include any questions you still have so that the instructor can provide additional
help if needed.

DFF1911 LABORATORY PROJECT

1. Create a Quartus schematic blueprint project called dff1911.
2. Implement a gate-level DFF block diagram with synchronous load and synchronous clear.

a. Use Reference Figures 1-4 at the end of this document to guide your work.
b. Complete Analysis and Synthesis on top-level design dff1911 to ensure there are no errors.
c. Correct any errors and recompile if needed.

3. Convert each block diagram file to a VHDL version using

 File Create/Update Create HDL Design File from Current File

4. Add the VHDL files to the project and remove the block diagram files.

 Project Add/Remove Files In Project…
 Select BDF and Remove
 Browse and add VHDL text files

5. Set dff1911.vhd as the top-level entity.

 Open the de1911.vhd file as the active tab.
 Project Set as Top Level Entity

6. Add a new VHDL file to the project. Enter the text in Figure 5 and save as testbench_dff1911.vhd.
7. Rebuild the design using Start Analysis and Synthesis.

 CE1911 LABORATORY PROJECT

These homework and laboratory exercises are © Dr. Russ Meier, Milwaukee School of Engineering.
All Rights Reserved. Unauthorized reproduction in print or electronic form is prohibited.

8. Configure the simulation tool.

Assignments Settings EDA Tool Settings Simulation
Tool Name ModelSim-Altera
Format for Output Netlist VHDL
NativeLink Settings Compile Test Bench
Test Benches…
New…
Test Bench Name (must match test bench entity) testbench_dff1911
Top Level Module in Test Bench testbench_dff1911
End Simulation At (determined by VHDL time delays) 6 us
Filename (browse, select, add) testbench_dff1911.vhd

Tools Options EDA Tool Options
Model-Sim Altera C:\intelFPGA_lite\18.0\modelsim_ase\win32aloem

9. Tools Run Simulation Tool RTL Simulation

a. ModelSim will open and run the VHDL test bench to control the simulation. ModelSim will likely
remain behind Quartus. Select the ModelSim icon from the Windows task bar to bring it to the
front.

b. Verify the circuit operates correctly. ModelSim will draw the waveforms in the output window.
Click in the waveforms. Use keyboard keys I and O to zoom in and out.

REG4 LABORATORY PROJECT

1. Create a Quartus schematic blueprint project called reg4.
2. Implement a functional-level REG4 block diagram. Use Reference Figure 6 as a guide.
3. Note that the register interconnects four dff1911 flip-flops. Thus, you must copy the blueprints for the SR

latch, D latch, and dff1911 flip-flop into the new project and create symbols files for each.
4. Complete Analysis and Sythesis on top-level design REG4 to ensure you have no errors. Correct if needed.
5. Convert the schematics to VHDL files.
6. Remove the schematics and add the VHDL files.
7. Set reg4.vhd as the top-level entity and rebuild the design.
8. Add a new VHDL file and enter the test bench from Figure 7. Save the file as testbench_reg4.vhd.
9. Configure the simulator, run functional simulation, and verify correct operation.

Assignments Settings EDA Tool Settings Simulation

Tool Name ModelSim-Altera
Format for Output Netlist VHDL
NativeLink Settings Compile Test Bench
Test Benches…
New…
Test Bench Name (must match test bench entity) testbench_reg4
Top Level Module in Test Bench testbench_reg4
End Simulation At (determined by VHDL time delays) 800 ns
Filename (browse, select, add) testbench_reg4.vhd

 CE1911 LABORATORY PROJECT

These homework and laboratory exercises are © Dr. Russ Meier, Milwaukee School of Engineering.
All Rights Reserved. Unauthorized reproduction in print or electronic form is prohibited.

REFERENCE FIGURES FOR DFF1911 LABORATORY PROJECT

Figure 1: SR Latch with Active-High Control Signals

 CE1911 LABORATORY PROJECT

These homework and laboratory exercises are © Dr. Russ Meier, Milwaukee School of Engineering.
All Rights Reserved. Unauthorized reproduction in print or electronic form is prohibited.

Figure 2: D Latch with Enable

 CE1911 LABORATORY PROJECT

These homework and laboratory exercises are © Dr. Russ Meier, Milwaukee School of Engineering.
All Rights Reserved. Unauthorized reproduction in print or electronic form is prohibited.

INPUTS

CLR LD D Q DESIRED BEHAVIOR DINT
0 0 0 0 hold Q 0
0 0 0 1 hold Q 1
0 0 1 0 hold Q 0
0 0 1 1 hold Q 1
0 1 0 0 load and store d 0
0 1 0 1 load and store d 0
0 1 1 0 load and store d 1
0 1 1 1 load and store d 1
1 0 0 0 clear Q to 0 0
1 0 0 1 clear Q to 0 0
1 0 1 0 clear Q to 0 0
1 0 1 1 clear Q to 0 0
1 1 0 0 clear Q to 0 0
1 1 0 1 clear Q to 0 0
1 1 1 0 clear Q to 0 0
1 1 1 1 clear Q to 0 0

Figure 3: Truth Table Used to Design the DFF1911 Circuit

 The DFF1911 component has active-high synchronous load and synchronous clear signals.
 Synchronous control signals cause behavior at the clock-edge. They are edge-triggered behaviors.
 Designers sometimes rename load as enable. The name load seems to be more common.
 Designers sometimes rename clear as reset because it better matches the foundational SR latch signal.
 The CLR behavior has a higher priority than the load (enable) signal in the design. (CLR overrides LD)
 The truth table highlights the active-high behaviors in blue.
 Sequential logic circuits feed the memory output, Q, back into the circuit as an input. This allows the

current remembered value to help calculate the next remembered value.
 Boolean algebra or the K-map technique result in this equation:

 𝐷𝐼𝑁𝑇 = 𝐶𝐿𝑅 ∙ 𝐿𝐷 ∙ 𝑄 + 𝐶𝐿𝑅 ∙ 𝐿𝐷 ∙ 𝐷

 CE1911 LABORATORY PROJECT

These homework and laboratory exercises are © Dr. Russ Meier, Milwaukee School of Engineering.
All Rights Reserved. Unauthorized reproduction in print or electronic form is prohibited.

Figure 4: DFF with Active-High Clear (Reset) and Active-High Load (Enable)

 CE1911 LABORATORY PROJECT

These homework and laboratory exercises are © Dr. Russ Meier, Milwaukee School of Engineering.
All Rights Reserved. Unauthorized reproduction in print or electronic form is prohibited.

library ieee;
use ieee.std_logic_1164.all;

entity testbench_dff1911 is
end entity testbench_dff1911;

architecture dataflow of testbench_dff1911 is
 signal CLK, CLR, LD, D: std_logic;
 signal Q, QBAR: std_logic;

 -- Ensure this component statement matches the dff1911.vhd entity statement
 -- by adjustin if needed.
 component dff1911 is
 port(CLR,LD,D,CLK: in std_logic;
 Q,QBAR: out std_logic);
 end component dff1911;

begin

 -- place the unit under test
 UUT: dff1911 port map(CLR=>CLR,LD=>LD,D=>D,CLK=>CLK,Q=>Q,QBAR=>QBAR);

 -- write the systematic process of testing: time delayed voltage changes
 test: process
 begin
 CLK <= '0'; CLR <= '0'; LD <= '0'; D <= '0'; WAIT FOR 0.5US;
 CLK <= '1'; CLR <= '0'; LD <= '0'; D <= '0'; WAIT FOR 0.5US;
 CLK <= '0'; CLR <= '0'; LD <= '0'; D <= '1'; WAIT FOR 0.5US;
 CLK <= '1'; CLR <= '0'; LD <= '0'; D <= '1'; WAIT FOR 0.5US;
 CLK <= '0'; CLR <= '0'; LD <= '1'; D <= '0'; WAIT FOR 0.5US;
 CLK <= '1'; CLR <= '0'; LD <= '1'; D <= '0'; WAIT FOR 0.5US;
 CLK <= '0'; CLR <= '0'; LD <= '1'; D <= '1'; WAIT FOR 0.5US;
 CLK <= '1'; CLR <= '0'; LD <= '1'; D <= '1'; WAIT FOR 0.5US;
 CLK <= '0'; CLR <= '0'; LD <= '0'; D <= '1'; WAIT FOR 0.5US;
 CLK <= '1'; CLR <= '0'; LD <= '0'; D <= '1'; WAIT FOR 0.5US;
 CLK <= '0'; CLR <= '1'; LD <= '0'; D <= '1'; WAIT FOR 0.5US;
 CLK <= '1'; CLR <= '1'; LD <= '0'; D <= '1'; WAIT FOR 0.5US;
 CLK <= '1'; CLR <= '0'; LD <= '0'; D <= '1'; WAIT FOR 0.5US;
 end process test;

 end architecture dataflow;

Figure 5: VHDL Test Bench for DFF1911

 CE1911 LABORATORY PROJECT

These homework and laboratory exercises are © Dr. Russ Meier, Milwaukee School of Engineering.
All Rights Reserved. Unauthorized reproduction in print or electronic form is prohibited.

REFERENCE FIGURES FOR REG4 LABORATORY PROJECT

Figure 6: 4-bit Register with Synchronous Load and Synchronous Clear

 CE1911 LABORATORY PROJECT

These homework and laboratory exercises are © Dr. Russ Meier, Milwaukee School of Engineering.
All Rights Reserved. Unauthorized reproduction in print or electronic form is prohibited.

library ieee;
use ieee.std_logic_1164.all;

entity testbench_reg4 is
end entity testbench_reg4;

architecture dataflow of testbench_reg4 is

 signal CLK, LD, CLR: std_logic; -- control signals
 signal D: std_logic_vector(3 downto 0); -- data inputs
 signal Q: std_logic_vector(3 downto 0); -- memory output

 -- ensure this component statement matches the reg4.vhd entity statement
 -- by adjusting if needed.
 component reg4 is
 port
 (CLK: in std_logic;
 LD: in std_logic;
 CLR: in std_logic;
 D: in std_logic_vector(3 DOWNTO 0);
 Q: out std_logic_vector(3 DOWNTO 0));
 end component reg4;

begin

 -- place the unit under test
 UUT: reg4 port map(CLK=>CLK, LD=>LD, CLR=>CLR, D=>D, Q=>Q);

 -- write the systematic process of testing: time delayed voltage changes
 test: process
 begin
 CLK <= '0'; CLR <= '0'; LD <= '0'; D <= X"4"; WAIT FOR 50ns;
 CLK <= '1'; CLR <= '0'; LD <= '0'; D <= X"5"; WAIT FOR 50ns;
 CLK <= '0'; CLR <= '0'; LD <= '0'; D <= X"5"; WAIT FOR 50ns;
 CLK <= '1'; CLR <= '0'; LD <= '0'; D <= X"5"; WAIT FOR 50ns;
 CLK <= '0'; CLR <= '0'; LD <= '1'; D <= X"5"; WAIT FOR 50ns;
 CLK <= '1'; CLR <= '0'; LD <= '1'; D <= X"5"; WAIT FOR 50ns;
 CLK <= '0'; CLR <= '0'; LD <= '1'; D <= X"A"; WAIT FOR 50ns;
 CLK <= '1'; CLR <= '0'; LD <= '1'; D <= X"A"; WAIT FOR 50ns;
 CLK <= '0'; CLR <= '0'; LD <= '0'; D <= X"C"; WAIT FOR 50ns;
 CLK <= '1'; CLR <= '0'; LD <= '0'; D <= X"C"; WAIT FOR 50ns;
 CLK <= '0'; CLR <= '1'; LD <= '0'; D <= X"C"; WAIT FOR 50ns;
 CLK <= '1'; CLR <= '1'; LD <= '0'; D <= X"C"; WAIT FOR 50ns;
 CLK <= '1'; CLR <= '0'; LD <= '0'; D <= X"C"; WAIT FOR 50ns;

 end process test;

end architecture dataflow;

Figure 7: VHDL Test Bench for REG4

