
 CE1911 LABORATORY PROJECT

These homework and laboratory exercises are © Dr. Russ Meier, Milwaukee School of Engineering.
All Rights Reserved. Unauthorized reproduction in print or electronic form is prohibited.

SUMMARY

Sequential circuits use memory components to create computation behavior sequenced in time. Memory allows
sequential circuits to remember a history of past inputs and use that history to help determine the next behavior.
The history becomes a stored number called state. There are two types of sequential circuits: asynchronous
sequential circuits and synchronous sequential circuits. Finite state machines are synchronous sequential circuits
that use a clock signal to sample the next state into the storage memory. The next state number is a function of
the current state number stored in memory as well as the input values.

𝑁𝑒𝑥𝑡𝑆𝑡𝑎𝑡𝑒 = 𝐹(𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑆𝑡𝑎𝑡𝑒, 𝐼𝑛𝑝𝑢𝑡𝑠)

The outputs of a finite state machine are calculated using approaches from the mid-1950s pioneered by Edward
Moore and George Mealy. A Moore Machine calculates outputs based only on the currently stored state. A Mealy
Machine calculates outputs based on the stored state and the current inputs.

𝑂𝑢𝑡𝑝𝑢𝑡𝑠 = 𝐹(𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑆𝑡𝑎𝑡𝑒)

𝑂𝑢𝑡𝑝𝑢𝑡𝑠 = 𝐹(𝐶𝑢𝑟𝑟𝑒𝑛𝑡 𝑆𝑡𝑎𝑡𝑒, 𝐼𝑛𝑝𝑢𝑡𝑠)

Moore Machine Mealy Machine

Mealy Machine outputs can change value at any time if an input causes an output gate to change value. Moore
Machine outputs can only change value at the clock edge when the state changes. For this reason, engineers
consider Moore Machines safer and thus this type of machine is more common.

There are many standard state machines in widespread use in electrical and computer engineering. One of the
most important state machines is the counter. Historically, counters have been part of circuity controlling traffic
lights, digital clocks, appliance timing, automotive engine timing, and engine rotation tachometers to name just a
few example systems. Today, many systems use software running on general-purpose computers and thus the use
of stand-alone counters on circuit boards has diminished. However, engineers can still purchase stand-alone
counters from the 7400 and CD4000 logic families. Examples include the CD4017, the 74161, and the 74191. In
addition, counters are important components fabricated into the microarchitecture of microprocessors and
microcontrollers. During this laboratory, you will design and implement a four-bit saturating up/down counter.

 CE1911 LABORATORY PROJECT

These homework and laboratory exercises are © Dr. Russ Meier, Milwaukee School of Engineering.
All Rights Reserved. Unauthorized reproduction in print or electronic form is prohibited.

PRELIMINARY LABORATORY READING

Counter state machines differ in their count patterns.

NAME BEHAVIOR COUNT PATTERN
n-bit binary standard binary number line 0 2n-1
modulo-n remainders of n 0 n-1
binary coded decimal binary of the decimal numbers 0 9
Gray code only one bit changes per count 0, 1, 3, 2
ring powers-of-2 001, 010, 100

They also differ in their behavior at the end of their number line. Standard counters rolls back to the start of their
number lines. Saturating counters lock at the end of the number line.

NAME BEHAVIOR COUNT PATTERN
2-bit standard binary rolls over at the end of the number line 0 3, 0 3, …
2-bit saturating binary locks at the end of the number line 0 3, 3, 3, …
standard modulo-5 rolls over at the end of the number line 0 4, 0 4, …
saturating modulo-5 locks at the end of the number line 0 4, 4, 4, …

Counters often have direction control signals that allow up-direction counting and down-direction counter.

S0

00

S1

01

S2

10

S3

11
U=1 U=1 U=1
U=0 U=0 U=0

U=1

U=0
CLR

2-bit standard up-down counter

2-bit saturating up-down counter

 CE1911 LABORATORY PROJECT

These homework and laboratory exercises are © Dr. Russ Meier, Milwaukee School of Engineering.
All Rights Reserved. Unauthorized reproduction in print or electronic form is prohibited.

NEW SIMULATION WORKFLOW

Simulation tools are an important part of modern engineering design workflow. These tools help to ensure that
designs meet functional and timing requirements. Computer-aided design suites often include multiple ways to
complete simulation. One technique uses input waveforms drawn by hand with a waveform editor. CE1901 used
this approach. A second technique uses a hardware description language to describe the input voltage changes
through time. Engineers call these hardware descriptions of test inputs test benches. CE1911 uses this approach.

CE1901 ModelSim-Altera Simulation Workflow

 CE1911 ModelSim-Altera Simulation Workflow

ModelSim requires that engineers convert all schematic designs to textual hardware descriptions before
simulation. The Quartus waveform editor completes this process automatically when it starts a simulation.
Engineers must complete this step when using VHDL test benches.

Schematic Draw
Waveforms Simulate

VHDL Draw
Waveforms Simulate

Schematic Convert
to VHDL

Write
Testbench Simulate

VHDL Write
Testbench Simulate

 CE1911 LABORATORY PROJECT

These homework and laboratory exercises are © Dr. Russ Meier, Milwaukee School of Engineering.
All Rights Reserved. Unauthorized reproduction in print or electronic form is prohibited.

DELIVERABLES DUE AT THE END OF THE LABORATORY PERIOD

1. Demonstrate a 4-bit saturating up-down counter implemented as a Moore finite state machine and
configured on the DE10-Lite. The next-state logic block and the output logic block are VHDL with-select
dataflow architectures. The top-level entity is a schematic blueprint interconnecting the next state logic,
memory register, and output logic.

2. Submit a laboratory report using the preferred method of your instructor. Include these sections:
a. Abstract: no more than two pages describing the circuits and the work you have completed. This

section should use text to convey to the reader the steps you took to complete the Moore
Machine design and summarize your results.

b. Circuits: a section that includes the Quartus schematic diagram, Quartus generated RTL diagram,
and any text you wish to include that demonstrates your understanding of the work. This section
could include truth tables, equations, etc. based on what you used in design.

c. Simulations: a section that documents the method of testing for the circuit. In other words, given
the inputs, how did you choose the number line you applied as voltages? Did it follow a truth
table? Was it random? Did you set arbitrary values? Why did you choose your method? You must
provide the ModelSim simulation waveforms with hand-written, electronic pen written, or typed
text that demonstrates how you know the simulation verifies the circuit operates correctly.

d. Conclusion: A short section that describes how the laboratory reinforced your learning of the
course material. Include any questions you still have so that the instructor can provide additional
help if needed.

e. Report submission deadline: 5 p.m. one day after your laboratory period.

DESIGN AND SIMULATION INSTRUCTIONS

1. Create a Quartus VHDL project called counter. The project must include these files.

FILENAME FORMAT NEW OR REUSE CIRCUIT
reg4.vhd behavioral VHDL new 4-bit register
nsl.vhd with-select VHDL new next state logic
seg7.vhd with-select VHDL reuse from CE1901 output logic
counter.vhd structural VHDL new 4-bit saturating up-down counter Moore FSM

a. Use Reference Figures 1-4 to guide your work.
b. Complete Analysis and Synthesis on top-level design counter to ensure there are no errors.
c. Correct any errors and recompile if needed.

2. Add a new VHDL file to the project. Enter the text in Figure 5 and save as testbench_counter.vhd.
3. Rebuild the design using Start Analysis and Synthesis.
4. Configure the simulation tool.

 CE1911 LABORATORY PROJECT

These homework and laboratory exercises are © Dr. Russ Meier, Milwaukee School of Engineering.
All Rights Reserved. Unauthorized reproduction in print or electronic form is prohibited.

Assignments Settings EDA Tool Settings Simulation

Tool Name ModelSim-Altera
Format for Output Netlist VHDL
NativeLink Settings Compile Test Bench
Test Benches…
New…
Test Bench Name (must match test bench entity) testbench_counter
Top Level Module in Test Bench testbench_counter
End Simulation At (determined by VHDL time delays) 5000ns
Filename (browse, select, add) testbench_counter.vhd

Tools Options EDA Tool Options
Model-Sim Altera C:\intelFPGA_lite\18.0\modelsim_ase\win32aloem

5. Tools Run Simulation Tool RTL Simulation

a. ModelSim will open and run the VHDL test bench to control the simulation. ModelSim will likely
remain behind Quartus.

b. Verify the circuit operates correctly. ModelSim will draw the waveforms in the output window.
Click in the waveforms. Use keyboard keys I and O to zoom in and out.

c. Correct any circuit errors by editing VHDL and re-simulating.

DE10-LITE CONFIGURATION INSTRUCTIONS

1. Add the VHDL slowclk component from Figure 6 to your project as a new VHDL file.
2. Adjust port maps in counter.vhd and include the slowclk component as shown in Figure 8. The connection

to ground can be done in a port map as ‘0’.
3. Do not attempt to simulate. Read the VHDL comments in Figure 7.
4. Complete Analysis and Synthesis to rebuild the design. Correct any errors.
5. Assign pins for inputs and outputs using Assignments Pin Planner.

SIGNAL NAME I/O DE10 PIN DE10-LITE I/O DEVICE REFERENCE IN DE10-LITE USER MANUAL
CLK input P11 clock circuit Page 25
CLR input F15 slide switch 9 Page 27
LD input C11 slide switch 1 Page 27
U input C10 slide switch 0 Page 27
Q[3] output B10 led R3 Page 28
Q[2] output A10 led R2 Page 28
Q[1] output A9 led R1 Page 28
Q[0] output A8 led R0 Page 28
SEGMENT[7] output D15 hex0[7] Page 29
SEGMENT[6] output C17 hex0[6] Page 29
SEGMENT[5] output D17 hex0[5] Page 29
SEGMENT[4] output E16 hex0[4] Page 29
SEGMENT[3] output C16 hex0[3] Page 29
SEGMENT[2] output C15 hex0[2] Page 29
SEGMENT[1] output E15 hex0[1] Page 29
SEGMENT[0] output C14 hex0[0] Page 29

 CE1911 LABORATORY PROJECT

These homework and laboratory exercises are © Dr. Russ Meier, Milwaukee School of Engineering.
All Rights Reserved. Unauthorized reproduction in print or electronic form is prohibited.

6. Complete Start Compilation.
7. Configure the DE10-Lite using Tools Programmer.
8. Test your design. Correct any errors you find.

TEST PLAN FOR UNIT 4-BIT UP/DOWN SATURATING COUNTER

STEP SIGNAL SLIDE SWITCH STARTING VALUE TOGGLE TO ENDING VALUE VERIFY
1 CLR SW9 0 1 0 display 0
2 LD SW1 0 1 1 display 0
3 U SW0 0 1 1 up count
4 U SW0 1 1 1 saturation at 15
5 U SW0 1 0 0 down count
6 U SW0 0 0 0 saturation at 0
7 U SW0 0 1 1 up count
8 CLR SW9 0 1 0 clear mid-count
9 LD SW1 1 0 0 count stops
10 LD SW1 0 1 1 count resumes

REFERENCE FIGURES

Figure 1: 4-bit Saturating Up-Down Counter Moore FSM

 CE1911 LABORATORY PROJECT

These homework and laboratory exercises are © Dr. Russ Meier, Milwaukee School of Engineering.
All Rights Reserved. Unauthorized reproduction in print or electronic form is prohibited.

INPUTS

DESIRED BEHAVIOR

OUTPUTS

U

CURRENT STATE NEXT STATE
Q3 Q2 Q1 Q0 D3 D2 D1 D0

0 0 0 0 0

count down

0 0 0 0 1
0 0 0 1 0
0 0 0 1 1
0 0 1 0 0
0 0 1 0 1
0 0 1 1 0
0 0 1 1 1
0 1 0 0 0
0 1 0 0 1
0 1 0 1 0
0 1 0 1 1
0 1 1 0 0
0 1 1 0 1
0 1 1 1 0
0 1 1 1 1
1 0 0 0 0

count up

1 0 0 0 1
1 0 0 1 0
1 0 0 1 1
1 0 1 0 0
1 0 1 0 1
1 0 1 1 0
1 0 1 1 1
1 1 0 0 0
1 1 0 0 1
1 1 0 1 0
1 1 0 1 1
1 1 1 0 0
1 1 1 0 1
1 1 1 1 0
1 1 1 1 1

Figure 2: Complete this truth table to guide your next state logic design

 CE1911 LABORATORY PROJECT

These homework and laboratory exercises are © Dr. Russ Meier, Milwaukee School of Engineering.
All Rights Reserved. Unauthorized reproduction in print or electronic form is prohibited.

INPUTS OUTPUTS
Q3 Q2 Q1 Q0 SEG7 SEG6 SEG5 SEG4 SEG3 SEG2 SEG1 SEG0

0 0 0 0
0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1
0 0 0 0
0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1

Figure 3: Complete this truth table to guide your output logic design

Design the output logic to write hexadecimal characters onto a seven-segment display.

 CE1911 LABORATORY PROJECT

These homework and laboratory exercises are © Dr. Russ Meier, Milwaukee School of Engineering.
All Rights Reserved. Unauthorized reproduction in print or electronic form is prohibited.

library ieee;
use ieee.std_logic_1164.all;

entity reg4 is
port(CLK, CLR, LD: in std_logic;
 D: in std_logic_vector(3 downto 0);
 Q: out std_logic_vector(3 downto 0));
end entity reg4;

architecture behavioral of reg4 is
begin

 update: process(CLK, CLR, LD)
 begin

if rising_edge(CLK) then
 if CLR = ‘1’ then Q <= X”0”;
 elsif LD = ‘1’ then Q <= D;

 end if;
end if;

 end process update;

end architecture behavioral;

Figure 4: VHDL File reg4.vhd

 CE1911 LABORATORY PROJECT

These homework and laboratory exercises are © Dr. Russ Meier, Milwaukee School of Engineering.
All Rights Reserved. Unauthorized reproduction in print or electronic form is prohibited.

library ieee;
use ieee.std_logic_1164.all;

entity testbench_counter is
end entity testbench_counter;

architecture dataflow of testbench_counter is

 signal CLK, U, CLR, LD: std_logic; -- control signals
 signal Q: std_logic_vector(3 downto 0); -- memory output
 signal SEGMENT: std_logic_vector(7 downto 0); -- data inputs

begin

 -- place the unit under test
 UUT: entity work.counter port map(U=>U,CLK=>CLK,LD=>LD,CLR=>CLR,
 Q=>Q,SEGMENT=>SEGMENT);

 -- write the clock process to generate the clock square wave
 clock: process
 begin
 CLK <= '0'; wait for 50ns;
 CLK <= '1'; wait for 50ns;
 end process clock;

 -- write the systematic process of testing: time delayed voltage changes
 test: process
 begin
 CLR <= '1', '0' after 200ns; -- keep CLR active two clock periods
 U <= '1', '0' after 2200ns; -- count up for 20 clocks + 2 clear
 LD <= '1'; -- always sample D
 wait;
 end process test;

end architecture dataflow;

Figure 5: VHDL Test Bench

 CE1911 LABORATORY PROJECT

These homework and laboratory exercises are © Dr. Russ Meier, Milwaukee School of Engineering.
All Rights Reserved. Unauthorized reproduction in print or electronic form is prohibited.

Figure 6: ModelSim-Altera simulation results

 The test bench creates a periodic clock waveform with a 100ns period.
 The test bench asserts the CLR control signal for two clock periods.
 The test bench asserts the U control signal for 2200 ns and de-asserts it for the rest of the simulation.
 The test bench asserts the LD control signal for the whole simulation; the register samples D each clock.
 The stored state Q shows the memory counting from 0 to 15 and saturating.
 The stored state Q shows the memory counting from 15 to 0 and saturating.

 CE1911 LABORATORY PROJECT

These homework and laboratory exercises are © Dr. Russ Meier, Milwaukee School of Engineering.
All Rights Reserved. Unauthorized reproduction in print or electronic form is prohibited.

-- ***
-- * FILENAME: slowclock.vhd *
-- * PROVIDES: *
-- * - High frequency clocks prevent the use of LEDs to see *
-- * output signals changing because human eyes only resolve *
-- * blinking light between 0 and approximately 30Hz. *
-- * - This file creates a slow 1 second clock by recognizing *
-- * that the 50MHz clock is pulsing 50E6 times per second. *
-- * A one second clock would pulse 1 time per second. *
-- * Thus, the one second pulse is high for 25E6 fast clocks *
-- * and low for 25E6 fast clocks. *
-- ***
-- * TO USE: *
-- * - Add this component into the clock path of an FSM under *
-- * test. Connect the 50MHz clock to the input named CLK50 *
-- * and connect output CLK1 to the machine clock input. *
-- * - In Quartus, use structural VHDL to complete this port *
-- * mapping or use a schematic blueprint that drops both *
-- * this component and the machine component in as the top *
-- * level entity. *
-- * - DO NOT ATTEMPT TO SIMULATE when this module is in place *
-- * because it will take 50 million clock periods to get *
-- * one clock period on your machine. Your computer will *
-- * take forever to complete a simulation and consume much *
-- * hard drive space. Only simulate your machine before you *
-- * add this component to the clock path. *
-- ***

library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

entity SLOWCLK is
port(RST, CLK50MHZ: in std_logic;
 CLK1HZ: inout std_logic);
end entity SLOWCLK;

architecture BEHAVIORAL of SLOWCLK is
 signal COUNT: integer;
 -- 25E6 times high and 25E6 times low
 constant HALF: integer := 25000000;

begin
 UPDATE: process(RST,CLK50MHZ)
 begin
 if RST = '1' then COUNT <= 0; CLK1HZ <= '0';
 elsif rising_edge(CLK50MHZ) then COUNT <= COUNT + 1;
 if COUNT = HALF then CLK1HZ <= not CLK1HZ; COUNT <= 0;
 end if;
 end if;
 end process;

end architecture BEHAVIORAL;

Figure 7: A VHDL slow clock component

 CE1911 LABORATORY PROJECT

These homework and laboratory exercises are © Dr. Russ Meier, Milwaukee School of Engineering.
All Rights Reserved. Unauthorized reproduction in print or electronic form is prohibited.

Figure 8: The counter FSM using a slower clock for human interaction

