
CE1911 LABORATORY

INTRODUCTION

Register files are small memories holding temporary values during computation. They are one part of
the central processing unit (CPU) of a microprocessor. Register files sit at the top of the memory
pyramid – the collection of memories that store data in a computer system. While a register holds a
single nbit wide data value, a register file holds multiple nbit wide values.

An analogy for a register file is a file cabinet. File cabinets have drawers where data – usually paper – is
stored. Users of a file cabinet can open a drawer and remove a data set to read. Similarly, users of a file
cabinet can open a drawer and place a new data set into the drawer.

Register files extend the file cabinet concept to voltage storage. The central processing unit reads and
writes data into registers selected with addresses. The total number of registers in the register file is
fixed to a powerof2. If a register file provides m registers, then the number of required address bits is logଶ ݉.

Consider a typical calculation such as Y = A+B. This calculation requires two pieces of data, A and B. The
central processing unit will first request these operands from the main memory of the computer in a
loadtoregister operation. Each operand will be stored in a unique register. Next, the central processing
unit will execute an add operation that reads the operands from the register, completes the arithmetic,
and writes the result to a third register. A principle in computer architecture called temporal locality
suggests that the programmer will likely use the calculated value soon in the program. Thus, the central
processing unit will not immediately store the calculated result back into main memory. An instruction
level view of this calculation using three registers numbered R0, R1, and R2 is:

load R0, Mem[A] ; comment: R0 = Mem[A]
load R1, Mem[B] ; comment: R1 = Mem[B]
add R2, R0, R1 ; comment: R2 = R0 + R1

Each instruction executes in one clock period. The third instruction suggests that the register file should
be able to provide two data values to the arithmetic unit in a single clock period. Thus, the register file
must have two read ports. Similarly, the third instruction suggests that the result should be stored back
into the register file in the same clock period. Thus, the register file must have one write port. The
central processing unit divides the instruction into behaviors that occur during the first half of the clock
period and behaviors that occur during the second half of the clock period.

Read registers and calculate Store result on falling edge

Figure 1: Dividing the clock period into register file behaviors

CE1911 LABORATORY

Standard register files are 2read/1write register files and thus have three address bus inputs: two
specifying the read registers and one specifying the write register. Figure 2 shows the functional level
symbol for a register file and Figure 3 shows the internal circuit.

Figure 2: Functional Symbol for a 2read/1write register file

Figure 3: Internal Circuit of a 2read/1write Register File

CE1911 LABORATORY

The internal circuit of Figure 3 shows four bytesized registers sharing a common connection to the
clock, to reset, and to the write data. These registers hold data for the central processing unit. Read
behavior is provided by two output multiplexers. Each readport multiplexer has its selection bits
attached to one of the read addresses. Similarly, Figure 3 shows an address decoder used to select
which register should write data based on the write address. Not every central processing unit
instruction will write calculated values back into the register file. Thus, the register file has a write
control signal called WR. This signal is connected to the address decoder. The diagram shows this
control signal as activelow. Thus, the behavior of the decoder can be summarized as:

If the WR signal is asserted and if the write address is 0 then LD0 asserts
If the WR signal is asserted and if the write address is 1 then LD1 asserts
If the WR signal is asserted and if the write address is 2 then LD2 asserts
If the WR signal is asserted and if the write address is 3 then LD3 asserts
If the WR signal is not asserted than no LD signal asserts

Together, the address decoder and the output multiplexers provide the read and write behaviors of the
register file.

IMPLEMENTATION STRATEGIES

Standard digital logic components are interconnected to form the register file. This interconnection
could be done schematically or described using a hardware description language. The input and output
ports of the register file are shown in Figure 2 and eight internal signals can also be seen in Figure 3.
These internal signals are listed in Table 1.

Table 1: Internal Signals Visible in Figure 3

INTERNAL SIGNAL PURPOSE
LD3 command register 3 to load on the fallingedge of the clock
LD2 command register 2 to load on the fallingedge of the clock
LD1 command register 1 to load on the fallingedge of the clock
LD0 command register 0 to load on the fallingedge of the clock
Q3 output of register R3
Q2 output of register R2
Q1 output of register R1
Q0 output of register R0

Strategy 1: Implement a VHDL bus multiplexer (busmux.vhd), a VHDL bytesized register
(reg8.vhd), and an address decoder (decoder.vhd) as components in a Quartus schematic
project (regfile.bdf).
Strategy 2: Implement a VHDL bus multiplexer (busmux.vhd), a VHDL bytesized register
(reg8.vhd), and an address decoder (decoder.vhd) as components in a Quartus structural VHDL
project (regfile.vhd).
Strategy 3: Implement the register file in a single Quartus behavioral VHDL project (regfile.vhd).

CE1911 LABORATORY

LABORATORY REQUIREMENTS

1. Implement the register file in Figure 3 using one of the three strategies.
2. Write a VHDL test bench that simulates the register file and verifies operation.
3. Submit a laboratory report using your instructor’s preferred method.

This laboratory is simulation only. You are not required to configure the DE10Lite FPGA.

TESTBENCH SUGGESTIONS

There are multiple behaviors that should be tested: reset, data write, and data read. A good testbench
will simulate all three behaviors multiple times. Here is a suggested data flow.

Reset behavior: tested at the beginning of the simulation to ensure the registers all zero.
Read behavior: rdaddr_a = 0, rdaddr_b = 1, verify that R0 and R1 produce 0 on outputs A and B
Read behavior: rdaddr_a = 2, rdaddr_b = 3, verify that R2 and R3 produce 0 on outputs A and B
Write behavior: wraddr = 1, wrdata = 9, wr = 0
Read behavior: rdaddr_a = 0, rdaddr_b = 1, verify that R0 and R1 produce 0 and 9 on A and B
Read behavior: rdaddr_a = 1, rdaddr_b = 2, verify that R1 and R2 produce 9 and 0 on A and B
Write behavior: wraddr = 0, wrdata = 13, wr = 0
Read behavior: rdaddr_a = 0, rdaddr_b = 3, verify that R0 and R3 produce 13 and 0 on A and B
Write behavior: wraddr = 2, wrdata = 6, wr = 0
Read behavior: rdaddr_a = 2, rdaddr_b = 1, verify that R2 and R1 produce 6 and 9 on A and B
Reset behavior: tested at the end of the simulation to ensure the registers all zero.
Read behavior: rdaddr_a = 0, rdaddr_b = 1, verify that R0 and R1 produce 0 on outputs A and B
Read behavior: rdaddr_a = 2, rdaddr_b = 3, verify that R2 and R3 produce 0 on outputs A and B

STRATEGY 3 HINTS

The eight internal signals identified in Table 1 are declared in the signal section.
Each internal Q signal has a corresponding process that samples WRDATA if its load is asserted.
The address decoder is a set of withselect statements or whenelse statements generating each
LD signal.

with WR & WRADDR select or LD0 <= ‘0’ when WR = ….
LD0 <= ‘0’ when … ,

The output multiplexers are withselect statements.

with RDADDR_A select
A <= Q3 when B”11”, …

