
SYSTEM DESCRIPTION

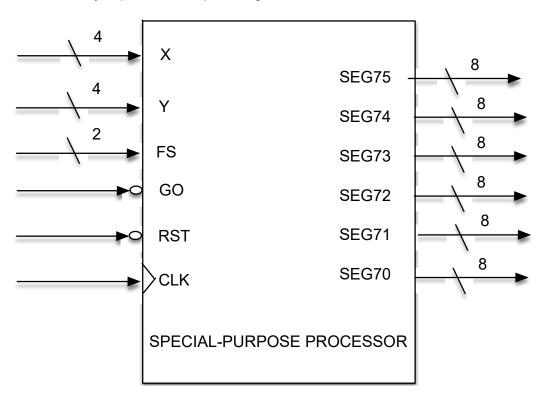
This specification describes and defines the requirements of the CE1911 special purpose processor. The processor uses a set of input toggle switches to provide values for the nibble-sized algebraic variables X and Y. It uses two toggle switches to choose one of four possible algebraic functions. The processor completes the chosen algebraic function as an 8-bit calculation and produces the 8-bit result. The 8-bit result is displayed as hexadecimal on 7-segment displays.

REQUIREMENTS

- 1. The system must present power-up system reset messaging.
- 2. The system must wait for a go signal provided by the user.
- 3. The system must use values provided on toggle switches.
- 4. The system must display the output value in hexadecimal on 7-segment displays.
- 5. The system must operate from DC power or USB supplied power.

USE CASE DIAGRAM

USE CASE EVENTS


- 1. Reset
 - A. The user pushes the reset button.
 - B. The system displays a power-up reset message.
 - C. The system waits for the **GO** command to complete a calculation.
- 2. Go
 - A. The user pushes the go button.
 - B. The system calculates the chosen function and displays the result.

These laboratory exercises are © Dr. Russ Meier, Milwaukee School of Engineering. All Rights Reserved. Unauthorized reproduction in print or electronic form is prohibited.

SPECIFICATION OF SYSTEM INPUTS AND OUTPUTS

- 1. System Inputs
 - A. The system uses an active-low reset pushbutton.
 - B. The system uses an active-low pushbutton to request a calculation.
 - C. The system uses eight toggle switches to provide nibble values X and Y.
 - D. The system uses two toggle switches to request an algebraic function.
- 2. System Outputs
 - A. The system uses six 7-segment displays.
- 3. Entity Input and Output Diagram

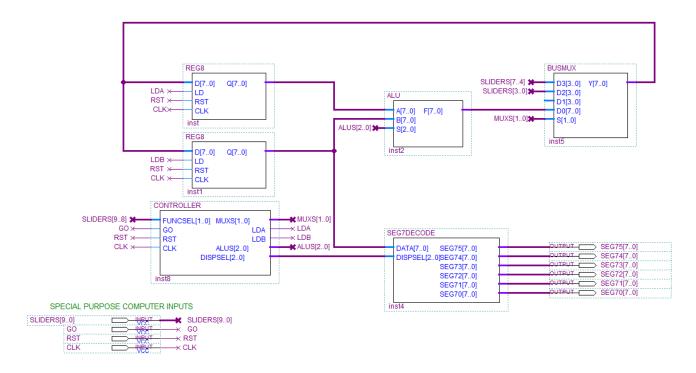
SYSTEM FUNCTIONAL SPECIFICATION

- A. The system is a finite state machine controlling an arithmetic data path.
 - i. The machine enters a reset state when the reset pushbutton is pushed.
 - ii. The machine moves through power-on reset messaging states when the reset pushbutton is released.
 - iii The machine waits in a hold state until commanded to begin calculation.
 - iii. The machine moves through a calculation timeline when the go pushbutton is pushed.
 - iv. The machine returns to the hold state after calculation.
- B. Power-on reset messaging algorithm
 - i. Center and display " $\Box \Box \Box \Box \Box$ " using the DSEG7 font.
 - ii. Wait one second
 - iii. Center and display "⊢E用d님" using the DSEG7 font.
 - iv. Wait one second
- C. Calculation algorithm
 - DO

WAIT UNTIL GO COMMAND SWITCH(FS) CASE 0: CALCULATE 8X+4Y CASE 1: CALCULATE 5X-Y CASE 2: CALCULATE 12Y+6 CASE 3: CALCULATE 2X+3Y-2 DISPLAY 8-BIT RESULT AS TWO HEX NIBBLES FOREVER

- D. ALU Operations
 - i. An ALU will be created with the following operations selected by a control signal called ALUS.

ALUS	F(A,B,S)
0 1 2 3 4 5 6 7	F=0 F=1 F=B-1 F=A+B F=A-B F=A+A F=A AND B F=A OR B


USER INTERFACE SPECIFICATION

5Pcon rEAdy

and calculated numerical results

SCHEMATIC DIAGRAM

NOTE: BUSMUX as a name conflicts in schematic projects. Use the name MYBUSMUX instead of BUSMUX in your work!

IMPLEMENTATION TECHNOLOGY

- 1. The system is described as dataflow, behavioral, and structural VHDL entities.
- 2. The system is implemented in an off-the-shelf Altera DE10-Lite FPGA board.

Table 1: Project Files

PROJECT NAME: LW9		
FILENAME	FORMAT	CIRCUIT
reg.vhd	behavioral VHDL	8-bit register with synchronous reset and
		synchronous load
alu.vhd	with-select dataflow	ALU implementing the operations from the functional
		specification
busmux.vhd	with-select dataflow	bus multiplexer
seg7decode.vhd	with-select dataflow	seven segment decoder for messages and numbers
controller.vhd	behavioral VHDL	Moore finite state machine to control the data path
lw9.vhd	structural VHDL	top-level schematic implemented as structural VHDL

TEST AND VERIFICATION PLAN

- 1. Simulation verifies the reset and operational use cases.
 - A. Simulation includes the reset use case as the first event.
 - B. Simulation overwrites arbitrary values on the X and Y data inputs.
 - C. Simulation overwrites an arbitrary value on the function select inputs.
 - C. Simulation asserts the go signal for one clock cycle to request calculation.
 - D. Visual inspection verifies the calculation result.
 - E. Simulation is repeated for all four functions.
- 2. Laboratory testing verifies the reset and operational use cases.

HINTS

1. Implement the ALU using **ieee.std_logic_unsigned** arithmetic. Use a single with-select statement to assign function values to F.

with ALUS select F <= B"00000000" when B"000", B"00000001" when B"001", B-1 when B"010", etc.

2. The requirements specify inputs X and Y as 4-bit numbers. Yet, the schematic shows 8-bit ALU arithmetic. The four-bit X and Y inputs can be converted to 8-bit values inside the bus multiplexer:

with S select

Y <= D0 when B"00", -- all 8 ALU output bits transfer: 8-bit input to 8-bit output B"0000"&D2 when B"10", -- zero valued upper nibble, D2 in lower nibble B"0000"&D1 when B"01", -- zero valued upper nibble, D1 in lower nibble B"0000"&D3 when others;

Cute, huh?! This allows you to convert your four-bit input numbers to eight-bit output numbers when multiplexed into the circuit.

4. The hexadecimal decoder simply uses with-select to decode each 7-segment display output. The display select bus allows the controller to choose what is on screen. You can choose the selection value that chooses □P□□¬, the selection value that chooses □P□□¬, the selection value that chooses □P□□¬, the selection value that chooses □P□□¬.