
Abstract
The special purpose data processor from CE1911 can be extended with a larger collection of
local storage registers. This larger collection allows more complex calculations because more
than two numbers can be near the arithmetic circuit for quick access. Historically, this collection
is called a register file. Registers files are sized between 4 and 64 registers. Modern processors
typically have a register file with 16 or 32 registers.
Large data sets will require even more storage. Consider each pixel on an LCD display. A 1920
pixel x 1280 pixel LCD that displays red/green/blue (RGB) color requires that one byte per color
for each pixel be stored. This results in more than 7 millions bytes of data calculated using
equation 1.

ݏ݁ݐݕܾ :ሺ1ሻ ݊݋݅ݐܽݑݍܧ = ሺ1920 ∗ 1280ሻݏ݈݁ݔ݅݌ ∗ 3 ݏ݁ݐݕܾ
݈݁ݔ݅݌ = ܽݐܽ݀ ݂݋ ݏ݁ݐݕܾ 7,372,800

Standard size units have been defined for computer memory systems addressed with binary
numbers. Table 1 shows these binary prefixes as defined by standards written by the Joint
Electron Device Engineering Council (JEDEC) and the International Electrotechnical Commission
(IEC). In CE1911, the historic abbreviations based on the metric system were introduced.
Students are not expected to know the modern names until CE1921.

Table 1: Binary Memory Prefixes
Power-of-2 Modern Name (21st Century) Modern Abbreviation Historic Name (metric system) Historic Abbreviation
210 kibi Ki kilo K
220 mebi Mi mega M
230 gibi Gi giga G
240 tebi Ti tera T
250 pebi Pi peta P

The calculation in equation 2 shows the total number of LCD pixel bytes using these prefixes.

ܽݐܽ݀ ݂݋ ݏ݁ݐݕܾ ሺ2ሻ: 7,372,800 ݊݋݅ݐܽݑݍܧ ∗ ܯ 1
2ଶ଴ = ݏ݁ݐݕܾܽ݃݁݉ 7.03 = ܤܯ7.03

In the modern unit, the answer would be stated as 7.03 mebibytes = 7.03 MiB.

Large data sets like this screen image example are held in random access memory (RAM). The
RAM memory can be multiplexed into the special purpose data processor and controlled by
controller generated addresses. By adding a register file and a larger RAM memory, the CE1911
special purpose data processor gains significant added functionality through an enhanced
memory system.

Register File Structural Design
This file cabinet of registers is accessed using two multiplexer selection signals for data reads.
Each selection signals forms the “address” of one piece of data that will be used for the ALU
calculation. In Figure 1, the output multiplexers choose one of four internal registers based on
these read data address busses called RDDATA1 and RDDATA0. Because two values are read
simultaneously, the register file is said to be a 2-Read register file.

Figure 1: A 2-Read/1-Write Register File

The ALU calculates a single result. This result needs to be stored back into a register for
potential use later in the algebraic calculation. Thus, Figure 1 also shows a write address bus
called WRADDR. This address is decoded to determine which register loads if enabled. Load
behavior is selected using the LD control signal. Thus, Figure 1 diagrams a 2-Read/1-Write port
register file.

D3D2D1D0

S

Y

BUSMUX4:1

D3D2D1
D0

S

Y

BUSMUX4:1

D
LDRSTCLK

Q

REG8

D
LDRSTCLK

Q

REG8

D
LDRSTCLK

Q

REG8

D
LDRSTCLK

Q

REG8

EN
ADDR

LD3LD2LD1LD0
DECODER

RDADDR0[1..0]

RDDATA0[7..0]

RDADDR1[1..0]

RDDATA1[7..0]

WRDATA[7..0]

RSTCLK

WRADDR[1..0]
LD

Register File VHDL Design
The structural design in Figure 1 can be created through schematic tools. Alternatively, a VHDL
description can be provided to a tool like the Altera Quartus Synthesizer.
-- *** -- * CE1911 * -- * Out-of-class example: posted to web for independent study * -- * Name: Dr. Meier * -- * Description: * -- * * -- * This file implements a register file with four (4) registers. * -- * It uses integers rather than std_logic_vectors because VHDL * -- * cleanly implements integer-based array indexing. * -- * * -- *** -- * This register file is two (2) read ports and one (1) write port. * -- * Read addresses control the output multiplexers selecting the * -- * registers to output. A write address controls the register loading* -- * input data. A load control signal allows load enable and disable. * -- *** -- Load the ieee libraries. -- Using rising_edge to simplify writing clock edge statement. library ieee; use ieee.std_logic_1164.all;
 entity regfile4 is port(wrdata: in integer range 0 to 255; rdaddr1, rdaddr0, wraddr: in integer range 0 to 3; ld,rst,clk: in std_logic; rddata1, rddata0: out integer range 0 to 255); end entity regfile4;
 architecture behavioral of regfile4 is
 -- A register file is a collection of registers. -- VHDL includes the most basic collection data structure: array. -- Using a user defined type to create an array of storage locations. type regarray is array(0 to 3) of integer range 0 to 255; signal registers: regarray; begin
 -- Always output requested read data. -- The "array index" forms a selection. -- Selection forms an output multiplexer. rddata1 <= registers(rdaddr1); rddata0 <= registers(rdaddr0);
 -- Now handle the register load. -- VHDL 2008 all keyword used: enable compiler setting for VHDL2008. -- Implementing active-low load. update: process(all) begin if rst = '0' then registers(0) <= 0; registers(1) <= 0; registers(2) <= 0; registers(3) <= 0; elsif rising_edge(CLK) then if ld = '0' then registers(wraddr) <= wrdata; end if; end if; end process;
 end architecture BEHAVIORAL;

RAM Memory VHDL Design
-- *** -- * CE1911 * -- * Out-of-class example: posted to web for independent study * -- * Name: Dr. Meier * -- * Description: * -- * * -- * This file implements a 256 location random access memory. * -- * It uses integers rather than std_logic_vectors because VHDL * -- * cleanly implements integer-based array indexing. * -- * * -- * This RAM is smaller than typical. Usually, RAM begins at 1KB and * -- * today reaches into the GB (or GiB) in size. * -- * * -- *** -- * This RAM has one (1) read ports and one (1) write port. * -- * A read addresses controls the output multiplexer selecting the * -- * memory location to output. A write address controls the RAM load. * -- * A load control signal allows load enable and disable. * -- *** -- Load the ieee libraries. -- Using rising_edge to simplify writing clock edge statement. library ieee; use ieee.std_logic_1164.all;
 entity ram is port(addr: in integer range 0 to 255; wrdata: in integer range 0 to 255; ld,rst,clk: in std_logic; rddata: out integer range 0 to 255); end entity ram;
 architecture behavioral of ram is
 -- A RAM is a collection of numbers. -- VHDL includes the most basic collection data structure: array. -- Using a user defined type to create an array of storage locations. type ramarray is array(0 to 255) of integer range 0 to 255; signal rammem: ramarray; begin
 -- Always output requested read data. -- The "array index" forms a selection. -- Selection forms an output multiplexer. rddata <= rammem(addr); -- Now handle the RAM load. -- VHDL 2008 all keyword used: enable compiler setting for VHDL2008. -- Implementing active-low load. update: process(all) begin if rst = '0' then for i in 0 to 255 loop rammem(i) <= 0; end loop; elsif rising_edge(CLK) then if ld = '0' then rammem(addr) <= wrdata; end if; end if; end process;
 end architecture BEHAVIORAL;

Special Purpose Computer Enhanced by Register File and a small RAM Memory of 256 locations

