

ALU DESIGN AND SIMULATION

Dr. Russ Meier, Milwaukee School of Engineering, Last Update: March 18, 2020

CLASS PROJECT SUMMARY

Instruction set architecture describes the programmer’s view of the machine. This level of computer blueprinting
allows design engineers to discover expected features of the circuit including:

 data processing instructions like ADD, SUB, AND, EOR, etc.,
 memory load-store instructions like LDR, STR, etc.,
 branch instructions with both conditional and unconditional flow control,
 the names and sizes of the registers provided for computational storage and flow control,
 the size of data memory provided for longer term storage during program execution, and
 the binary encodings for each instruction.

These features are then used by design engineers as they choose components to organize together into a working
circuit. Multiple micro-architectures are possible for any given instruction set architecture because different
design engineers can choose different components and different organizational strategies when implementing the
features. In the end, however, any micro-architecture design must implement the features described by the
instruction set architecture.

One organizational decision that leads to different micro-architectures is the number of clock periods used per
instruction. The three common clock-period strategies are called single-cycle, multi-cycle, and pipelined.

 Single-cycle processors use one clock-period per instruction and the clock-period is set by the total delay
of the slowest instruction. This is a disadvantage as faster instructions cannot execute more quickly. The
advantage, however, is straightforward control circuitry.

 Multi-cycle processors use multiple clock-periods per instruction and each instruction uses the minimum
number of clock periods required for its execution. This allows faster instructions that do not access data
memory, like ADD, to avoid the unnecessary delay of the data memory stage. Thus, the advantage is
speed for faster instructions. The disadvantage is more complex control because a finite state machine
controller must be built to coordinate control signals across multiple clock periods.

 Pipelined processors exploit instruction level parallelism to allow multiple instructions to be in execution
at the same time. This is accomplished by adding state registers between the instruction fetch, instruction
decode, execute, memory access, and write-back stages of the circuit.

The CE1921 laboratory is designed as a large multi-week project requiring students to design and simulate a single-
cycle processor for a subset of the ARMv4 instructions. Students are required to:

 Design VHDL and schematic data path components including registers, a register file, instruction ROM,
data memory, ALU, extenders, and controllers.

 Organize the components together into a top-level schematic that implements a single-cycle processor.
 Simulate the processor using a basic test program.

ALU DESIGN AND SIMULATION

Dr. Russ Meier, Milwaukee School of Engineering, Last Update: March 18, 2020

LABORATORY EXERCISE

The heart of any instruction set processor is its arithmetic circuit. The width of the arithmetic circuit sets the word
size of the machine. This word size is used to set the size of all other architectural features including the width of
registers, the data bus, the address bus, and instruction binary numbers. The ARMv4 instruction set architecture
specifies a word size of 32 bits.

Use the skeleton code provided on the next page to guide your work as you complete the VHDL description for the
CE1921 ARMv4 ALU. The skeleton code uses a package created by Synopsys, Incorporated that extends arithmetic
to standard logic vectors.

COMPONENT BEHAVIOR

ALUS F

0 A+B
1 A-B
2 A AND B
3 A OR B
4 A XOR B
5 A
6 B
7 1

ALU Arithmetic Condition Flags
Carry, Signed number line oVerflow, Negative, and Zero
C = carry out of the computation = F(32) using the approach below.
V = see circuit equation truth table in the skeleton code
N = sign of the result = F(31)
Z = 1 if F = 0

SIMULATION REQUIREMENTS

 Write one arbitrary value onto A and B through simulation time.
 Write a count sequence on S through simulation time.
 Simulation verifies that F demonstrates correct calculation, pass, or constant 1 values.
 Simulation verifies that C,V,N, and Z are correct for the arbitrary values on A.
 See the final page of this laboratory for an example.

ALU DESIGN AND SIMULATION

Dr. Russ Meier, Milwaukee School of Engineering, Last Update: March 18, 2020

SKELETON CODE

-- **
-- * project: alu
-- * filename: alu.vhd
-- * author: << insert your name here >>
-- * date: MSOE Spring Quarter 2020
-- * provides: 32-bit ALU for the CE1921 single-cycle processor
-- **

-- use library packages
-- std_logic_1164: 9-valued logic signal voltages
-- std_logic_numeric_std: allows arithmetic on std_logic_vectors
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;

-- function block symbol
-- A, B, and F are 32-bit numbers
-- signed and unsigned only matter when doing comparison
-- the ALU doesn't do comparison so declaring as unsigned is fine
entity ALU is
port(A,B: in std_logic_vector(31 downto 0);
 S: in std_logic_vector(2 downto 0);
 F: out std_logic_vector(31 downto 0);
 C,V,N,Z: out std_logic);
end entity ALU;

-- circuit description
architecture MULTIPLEXER of ALU is

 -- 32-bit addition results in carry-out to column 32.
 -- use 33-bit vectors to store that extra carry-out bit
 signal INTA, INTB, INTF: std_logic_vector(32 downto 0);

begin

 -- connect INTA and INTB to the inputs
 INTA(32) <= '0';
 INTA(31 downto 0) <= A;
 INTB(32) <= '0';
 INTB(31 downto 0) <= B;

 -- complete the arithmetic and logic
 with S select
 INTF <= INTA+INTB when B"000", -- addition
 INTA-INTB when B"001", -- subtraction
 -- COMPLETE the rest of the with-select

 -- connect the 32-bit result to the output signal
 F <= INTF(31 downto 0);

 -- create the flag bits to announce particular result events
 C <= INTF(32); -- the carry out to column 32

 N <= -- COMPLETE: negative is just the MSB of the 32-bit result

 Z <= '1' when INTF(31 downto 0) = X"00000000" else '0';

 -- COMPLETE the truth table for signed overflow
 -- overflow occurs when two positives add to a negative
 -- overflow occurs when two negatives add to a positive

ALU DESIGN AND SIMULATION

Dr. Russ Meier, Milwaukee School of Engineering, Last Update: March 18, 2020

 -- overflow occurs when negative minus positive gives positive
 -- overflow occurs when positive minus negative gives negative
 -- remember that the sign bit of each number is is bit 31
 --
 -- COMPLETE TRUTH TABLE BY FILLING IN VALUES FOR V
 -- USING SELECT SIGNAL S(0) TO DIFFERENTIATE BETWEEN ADD AND SUBTRACT
 --
 -- S(0) INTA(31) INTB(31) INTF(31) | V COMPLETE COMMENTS BEHIND V ALSO
 -- ------------------------------------
 -- 0 0 0 0 | 0 + plus + = +
 -- 0 0 0 1 | 1 + plus + = -
 -- 0 0 1 0 | 0 + plus - = +
 -- 0 0 1 1 |
 -- 0 1 0 0 |
 -- 0 1 0 1 |
 -- 0 1 1 0 |
-- 0 1 1 1
 -- 1 0 0 0 | 0 + minus + = +
 -- 1 0 0 1 | 0 + minus + = -
 -- 1 0 1 0 | 0 + minus - = +
 -- 1 0 1 1 |
 -- 1 1 0 0 |
 -- 1 1 0 1 |
 -- 1 1 1 0 |
 -- 1 1 1 1 |

 -- IMPLEMENT V AS A CANONICAL LOGIC EQUATION
 V <= (not S(0) and not INTA(31) and not INTB(31) and INTF(31)) or -- minterm 1
 -- COMPLETE minterms

end architecture MULTIPLEXER;

SUBMISSION

 You must submit well-commented VHDL code and simulation waveform diagrams using your instructor’s
preferred submission method. Simulation can be completed using a Quartus university waveform file or a
Quartus VHDL testbench with Modelsim-Altera waveform results. Be sure to simulate multiple times and
include all diagrams – including one that causes a Z-flag condition to be true.

 You must comment on how you know the simulation is correct.
 You are not allowed to use the same arbitrary numbers as this example.

“I know that this simulation is correct because all values reflect the expected calculations selected using S. For
example, 37+49 = 86 and 37 is passed as the output when S=6. I’ve provided a table below that shows the work
that verifies each of the selection results ….”

“I have also checked the flag outputs. Here is how I know that they are correct…”

