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CLASS PROJECT SUMMARY 
 
Instruction set architecture describes the programmer’s view of the machine. This level of computer blueprinting 
allows design engineers to discover expected features of the circuit including: 

 data processing instructions like ADD, SUB, AND, EOR, etc.,  
 memory load-store instructions like LDR, STR, etc.,  
 branch instructions with both conditional and unconditional flow control,  
 the names and sizes of the registers provided for computational storage and flow control,  
 the size of data memory provided for longer term storage during program execution, and  
 the binary encodings for each instruction. 

These features are then used by design engineers as they choose components to organize together into a working 
circuit. Multiple micro-architectures are possible for any given instruction set architecture because different 
design engineers can choose different components and different organizational strategies when implementing the 
features. In the end, however, any micro-architecture design must implement the features described by the 
instruction set architecture.  

One organizational decision that leads to different micro-architectures is the number of clock periods used per 
instruction. The three common clock-period strategies are called single-cycle, multi-cycle, and pipelined.  

 Single-cycle processors use one clock-period per instruction and the clock-period is set by the total delay 
of the slowest instruction. This is a disadvantage as faster instructions cannot execute more quickly. The 
advantage, however, is straightforward control circuitry.  

 Multi-cycle processors use multiple clock-periods per instruction and each instruction uses the minimum 
number of clock periods required for its execution. This allows faster instructions that do not access data 
memory, like ADD, to avoid the unnecessary delay of the data memory stage. Thus, the advantage is 
speed for faster instructions. The disadvantage is more complex control because a finite state machine 
controller must be built to coordinate control signals across multiple clock periods.  

 Pipelined processors exploit instruction level parallelism to allow multiple instructions to be in execution 
at the same time. This is accomplished by adding state registers between the instruction fetch, instruction 
decode, execute, memory access, and write-back stages of the circuit. 

The CE1921 laboratory is designed as a large multi-week project requiring students to design and simulate a single-
cycle processor for a subset of the ARMv4 instructions. Students are required to: 

 Design VHDL and schematic data path components including registers, a register file, instruction ROM, 
data memory, ALU, extenders, and controllers.  

 Organize the components together into a top-level schematic that implements a single-cycle processor.  
 Simulate the processor using a basic test program.  
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LABORATORY EXERCISE 
 
The ARMv4 control circuit decodes bit fields of the machine code binary number and generates control signals to: 

 route data through multiplexers,  
 select the ALU operation, and 
 control which registers or memory write data. 

The three most-significant nibbles of the machine code binary number contain the fields that must be decoded by 
the controller. These nibbles become an input bus to the control circuit as shown in the block diagram symbol 
below. And, because the CE1921 single-cycle processor only supports the BNE and BEQ conditional branches, only 
the Z-bit from the condition code nibble is required as a circuit input. Unlike the textbook circuit, the CE1921 
processor does not include the condition code register as part of the controller. Rather, it is a separate register 
that sits decide the ALU. This separate register uses an active-low write control signal, called CPSRWR, that 
becomes active when the CMP instruction is executing.  

Use the information, design tables, and the skeleton code provided on the next pages to guide your work as you 
complete the VHDL description for the CONTROL component.  

COMPONENT BEHAVIOR 

 

 PCSRC routes PC+4 or the Branch Address to the PC input . 
 A2SRC routes Rm or Rd bit field to the A2 address input of the REGFILE. 
 REGWR is the active-low REGFILE write control signal. 
 ALUSRCB routes REGFILE RD2 or the IMM32 to ALU input B. 
 ALUS selects the ALU operation.  
 CPSRWR is the active-low write control signal active used to store the 

CVNZ bits in the CPSR register that sits next to the ALU. It is active only 
for CMP instructions. 

 MEMWR is the active-low DATA MEMORY write control signal. 
 REGSRC routes the data processing ALU result or the LDR DATA MEMORY 

value to the REGFILE for storage. For those reading the textbook, this 
signal is called MemtoReg in the textbook design. 

SIMULATION REQUIREMENTS  
 Overwrite arbitrary value E3A onto the IBUS input.  
 Overwrite Z=0 on the Z input.  
 Run the simulation.  
 Explain your simulation results. How do you know they are correct? 
 Repeat for arbitrary value 0A0. 
 Repeat for arbitrary value E59.  

 

SUBMISSION  
 

 You must submit well-commented VHDL code and simulation waveform diagrams using your instructor’s 
preferred submission method. Simulation can be completed using a Quartus university waveform file or a 
Quartus VHDL testbench with Modelsim-Altera waveform results.  

 You must comment on how you know the simulation is correct.  

“I know that this simulation is correct because E3A is a _________ instruction. Checking against my instruction 
table, all the outputs match.”   
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REFERENCE TABLES FOR CE1921 SINGLE-CYCLE PROCESSOR CIRCUIT COMPONENT CONTROL SIGNALS 

PC DATA MUX  REGFILE A2 MUX  ALU SELECT 
PCSRC Y  A2SRC Y  ALUS F 

0 BRADDR  0 RM BITFIELD  0 ADD 
1 PC+4  1 RD BITFIELD  1 SUB 
      2 AND 
ALUSRCB MUX  REGFILE DATA SRC MUX  3 OR 

ALUSRCB Y  REGSRC Y  4 XOR 
0 IMM32  0 MEMORY  5 A 
1 REGFILE RD2  1 ALU  6 B 
      7 constant 1 

 

The CE1921 laboratory processor does not implement the ARMv4 ISA using the textbook circuit. A different circuit 
is used that simplifies the register file and the calculation of branch addresses. And, the CE1921 laboratory uses 
VHDL to implement the controller – eliminating the need to break the controller up into smaller pieces that enable 
paper design. For this reason, some components of Figure 7.13 in the textbook do not appear in the CE1921 circuit 
while other components do. Here is a mapping between the textbook control signals and the control signals used 
in laboratory.  

 

TEXTBOOK CONTROL SIGNAL IN FIGURE 7.13 CE1921 LABORATORY CIRCUIT CONTROL SIGNAL 
PCSRC PCSRC 
MemtoReg REGSRC 
MemWrite MEMWR 
AluControl ALUS 
ALUSrc ALUSRCB 
ImmSrc Not used. The opcode bitfield is directly wired to the extender in 

the lab circuit as the extender selection choices correspond 
directly with opcode.  

RegWrite REGWR 
RegSrc A2SRC 
Not used. CPSRWR   

(active-low controls signal active for only CMP instructions) 
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EXAMPLE TRUTH TABLE UNDER CONSTRUCTION – TRUTH TABLES ARE PROVIDED TO STUDENTS IN EXCEL FORMAT FOR COMPLETION 

 Don’t cares are noted with theta (θ) symbols because Dr. Meier generally zeros don’t care values when writing equations in VHDL. Use X if you 
prefer that symbol for don’t care values.   

INSTRUCTION INPUTS   OUTPUTS 

  COND OP I CMD S   PCSRC A2SRC REGWR ALUSRCB ALUS CPSRWR MEMWR REGSRC 

ADD Rd, Rn, Rm  E 0 0 4 0   1 0 0 1 0 1 1 1 

ADD Rd, Rn, imm32 E 0 1 4 0   1 θ 0 0 0 1 1 1 

AND Rd, Rn, Rm                              

AND Rd, Rn, imm32                             

CMP Rn, Rm                             

CMP Rn, imm32 E 0 1 A 1   1 θ 1 0 1 0 1 θ 

EOR Rd, Rn, Rm                              

EOR Rd, Rn, imm32                             

MOV Rd, Rm  E 0 0 D 0   1 0 0 1 6 1 1 1 

MOV Rd, imm32                             

ORR Rd, Rn, Rm                              

ORR Rd, Rn, imm32                             

SUB Rd, Rn, Rm                              

SUB Rd, Rn, imm32                             
 

ADD Rd, Rn, Rm   Rd  Rn + Rm  PC = PC + 4 PCSRC=PC+4, A2SRC=RM, REGWR=active-low, ALUSRCB=RM=REGFILE RD2, ALUS=ADD=0,  
       CPSRWR=not-active, MEMWR=not-active, REGSRC=ALU 

CMP Rn, imm32   Rn - Imm  PC = PC + 4 PCSRC=PC+4, A2SRC=RM, REGWR=not-active, ALUSRCB=IMM32, ALUS=SUB=1,  
   CSPR CVNZ   CPSRWR=active-low, MEMWR=not-active, REGSRC=don’t care (θ) because REGFILE is not writing   
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-- ******************************************************** 
-- * project:     control 
-- * filename:    control.vhd 
-- * author:      << insert your name here >> 
-- * date:        MSOE Spring Quarter 2020 
-- * provides:    a control circuit for the ARMv4 ISA 
-- *              instructions implemented in the CE1921 
-- *              single-cycle processor 
-- * approach:    use when-else statements  
-- ******************************************************** 
 
-- use library packages  
-- std_logic_1164: 9-valued logic signal voltages  
library ieee; 
use ieee.std_logic_1164.all; 
 
-- functional block symbol 
-- inputs 
--    IBUS is the upper 12-bits of the 32-bit machine code 
--    Z is the zero condition code flag from the CPSR 
-- outputs  
--    PCSRC:   0 = BranchAddress    1 = PC+4 
--    A2SRC:   0 = Rm               1 = Rd  
--    REGWR:   0 = Regfile Write    1 = Regfile does not write  
--    ALUSRCB: 0 = imm32            1 = RD2 from Regfile  
--    ALUS:    0 = ADD              1 = SUb 
--             2 = AND              3 = OR 
--             4 = XOR              5 = A 
--             6 = B                7 = 0X00000001 
--    CSPRWR:  0 = CPSR Write       1 = CPSR does not write  
--    MEMWR:   0 = Data Mem Write   1 = Data Mem does not write 
--    REGSRC:  0 = Data Mem Value   1 = ALU Value 
 
entity CONTROL is  
port(IBUS:     in  std_logic_vector(31 downto 20); 
     Z:        in  std_logic; 
     PCSRC:    out std_logic;  
     A2SRC:    out std_logic;  
     REGWR:    out std_logic;  
     ALUSRCB:  out std_logic; 
     ALUS:     out std_logic_vector(2 downto 0); 
     CPSRWR:   out std_logic;  
     MEMWR:    out std_logic; 
     REGSRC:   out std_logic); 
end entity CONTROL; 
 
-- circuit description  
architecture DATAFLOW of CONTROL is  
   -- declare signals for the IBUS bit fields  
   -- data processing  
   signal COND : std_logic_vector(3 downto 0); 
   signal OPCODE: std_logic_vector(1 downto 0); 
   signal I: std_logic; 
   signal CMD: std_logic_vector(3 downto 0); 
   signal S: std_logic; 
   -- load-store 
   signal IBAR: std_logic; 
   signal PUBW: std_logic_vector(3 downto 0); 
   signal L: std_logic; 
   -- branch  
   signal BRL: std_logic; -- the branch L bit is a different bit than Load/Store L 
    
begin 
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   -- assign IBUS bits to internal signals  
   COND <= IBUS(31 downto 28); 
   OPCODE <= IBUS(27 downto 26); 
   I <= IBUS(25); 
   -- << continue writing these internal signal assignments >>  
    
    
    
    
    
   -- write output equations using when-else syntax  
   -- include rows from data processing, load-store, and branch truth tables 
   PCSRC <= '0' when COND=X"0" and OPCODE=B"10" and BRL='0' and Z='1' else -- beq taking branch 
            -- << complete other equations taking branch >>  
            else  
           '1'; -- PC+4 for all other instructions  
             
   A2SRC <= '0' when COND=X"E" and OPCODE=B"00" and I='0' and CMD=X"4" and S='0' else -- add reg 
            '0' when COND=X"E" and OPCODE=B"00" and I='1' and CMD=X"4" and S='0' else -- add imm 
            -- << complete>> 
             
   -- complete all equations  
    
end architecture DATAFLOW; 


