
		 CE1921	LABORATORY	PROJECT	 	

These homework and laboratory exercises are © Dr. Russ Meier, Milwaukee School of Engineering.

All Rights Reserved. Unauthorized reproduction in print or electronic form is prohibited.

	
	

	
SUMMARY	
	
Instruction	set	architecture	describes	the	programmer’s	view	of	the	machine.	This	level	of	computer	blueprinting	
allows	design	engineers	to	discover	expected	features	of	the	circuit	including:	
	

• data	processing	instructions	like	ADD,	SUB,	AND,	EOR,	etc.,		
• memory	load-store	instructions	like	LDR,	STR,	etc.,		
• branch	instructions	with	both	conditional	and	unconditional	flow	control,		
• the	names	and	sizes	of	the	registers	provided	for	computational	storage	and	flow	control,		
• the	size	of	data	memory	provided	for	longer	term	storage	during	program	execution,	and		
• the	binary	encodings	for	each	instruction.	

	
These	features	are	then	used	by	design	engineers	as	they	choose	components	to	organize	together	into	a	working	
circuit.	Multiple	micro-architectures	are	possible	for	any	given	instruction	set	architecture	because	different	design	
engineers	can	choose	different	components	and	different	organizational	strategies	when	implementing	the	
features.	In	the	end,	however,	any	micro-architecture	design	must	implement	the	features	described	by	the	
instruction	set	architecture.	One	organizational	strategy	decision	that	leads	to	different	micro-architectures	is	the	
number	of	clock	periods	used	per	instruction.	The	three	common	clock-period	strategies	are	called	single-cycle,	
multi-cycle,	and	pipelined.		
	

• Single-cycle	processors	use	one	clock-period	per	instruction	and	the	clock-period	is	set	by	the	total	circuit	
delay	required	to	execute	the	slowest	instruction.	This	is	a	disadvantage	as	faster	instructions	cannot	
execute	more	quickly.	The	advantage,	however,	is	straightforward	control	circuitry.		

• Multi-cycle	processors	use	multiple	clock-periods	per	instruction	and	each	instruction	uses	the	minimum	
number	of	clock	period	required	for	its	execution.	This	allows	faster	instructions	like	ADD	that	do	not	
access	data	memory	to	avoid	the	unnecessary	delay	of	the	data	memory	stage.	Thus,	the	advantage	is	
speed	for	faster	instructions.	The	disadvantage	is	more	complex	control	because	a	finite	state	machine	
controller	must	be	built	to	coordinate	control	signals	across	multiple	clock	periods.		

• Pipelined	processors	exploit	instruction	level	parallelism	to	allow	multiple	instructions	to	be	in	execution	
at	the	same	time.	This	is	accomplished	by	adding	state	registers	between	the	instruction	fetch,	instruction	
decode,	execute,	memory	access,	and	write-back	stages	of	the	circuit.	Performance	improves	because	
multiple	instructions	are	executing	in	the	processor	circuit	during	each	clock	period.	The	challenge	is	
keeping	the	pipeline	full	of	instructions	that	can	be	executing	simultaneously.		
	

This	multi-week	project	requires	students	to	design	and	simulate	an	pipelined	processor.	Over	the	next	two	weeks,	
the	basic	single	cycle	processor	must	be	transformed	into	a	pipelined	processor	that	implements	forwarding	for	
data	hazard	management	and	early-branch	detection	for	control	hazard	management.	Branch	prediction	is	not	
implemented.		
	
	 	

		 CE1921	LABORATORY	PROJECT	 	

These homework and laboratory exercises are © Dr. Russ Meier, Milwaukee School of Engineering.

All Rights Reserved. Unauthorized reproduction in print or electronic form is prohibited.

	
	

EXERCISES	

1. Transform the single cycle processor to a basic pipeline that does not manage control or
data hazards. Thus, this pipeline cannot stall or flush. It is capable of correctly executing
only long streams of ARMv4 instructions that do not have data hazards or any branches.

2. Extend your basic pipeline to a pipeline with data hazard management implemented with
forwarding signals at the ALUSRCA and ALUSRCB multiplexers. Forwarding control
can be implemented within the ALUSRCA and ALUSRCB signal equations of the
decode stage controller or a separate forwarding controller can be constructed. This
pipeline does not flush. Thus, it is capable of handling long streams of ARMv4
instructions that have data hazards but no branches.

3. Extend your DHM-pipeline to an advanced pipeline that manages both data hazards and
branch hazards. This complete pipeline (CPIPE) handles all data hazards, including those
caused by LDR, as well as branch control hazards caused by B, BEQ, BNE, and BL to
leaf subroutines (subroutines that do not call other subroutines).

These exercises must be completed over weeks 8, 9, and 10. Students can elect to work toward
any of the goals with lab points distributed in the following way.

PIPELINE GRADE LEVEL MAXIMUM LAB POINTS POSSIBLE
NONE no work 0
BASIC C-level work 70
DHM PIPE B-level work 85
CPIPE A-level work 100

DELIVERABLES	AND	DUE	DATE	

1. This laboratory must be demonstrated to your instructor no later than Friday of week 10.
2. Screenshots of VHDL simulation verifying results must be included in your submission

packet. Add written comments that demonstrate how you know your simulation is
correct.

3. Additional materials may be required by your instructor in your submission packet.
4. Due date: This laboratory must be demonstrated to the instructor no later than the end of

week 10.

