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CLASS PROJECT SUMMARY 
 
Instruction set architecture describes the programmer’s view of the machine. This level of computer blueprinting 
allows design engineers to discover expected features of the circuit including: 

 data processing instructions like ADD, SUB, AND, EOR, etc.,  
 memory load-store instructions like LDR, STR, etc.,  
 branch instructions with both conditional and unconditional flow control,  
 the names and sizes of the registers provided for computational storage and flow control,  
 the size of data memory provided for longer term storage during program execution, and  
 the binary encodings for each instruction. 

These features are then used by design engineers as they choose components to organize together into a working 
circuit. Multiple micro-architectures are possible for any given instruction set architecture because different 
design engineers can choose different components and different organizational strategies when implementing the 
features. In the end, however, any micro-architecture design must implement the features described by the 
instruction set architecture.  

One organizational decision that leads to different micro-architectures is the number of clock periods used per 
instruction. The three common clock-period strategies are called single-cycle, multi-cycle, and pipelined.  

 Single-cycle processors use one clock-period per instruction and the clock-period is set by the total delay 
of the slowest instruction. This is a disadvantage as faster instructions cannot execute more quickly. The 
advantage, however, is straightforward control circuitry.  

 Multi-cycle processors use multiple clock-periods per instruction and each instruction uses the minimum 
number of clock periods required for its execution. This allows faster instructions that do not access data 
memory, like ADD, to avoid the unnecessary delay of the data memory stage. Thus, the advantage is 
speed for faster instructions. The disadvantage is more complex control because a finite state machine 
controller must be built to coordinate control signals across multiple clock periods.  

 Pipelined processors exploit instruction level parallelism to allow multiple instructions to be in execution 
at the same time. This is accomplished by adding state registers between the instruction fetch, instruction 
decode, execute, memory access, and write-back stages of the circuit. 

The CE1921 laboratory is designed as a large multi-week project requiring students to design and simulate a single-
cycle processor for a subset of the ARMv4 instructions. Students are required to: 

 Design VHDL and schematic data path components including registers, a register file, instruction ROM, 
data memory, ALU, extenders, and controllers.  

 Organize the components together into a top-level schematic that implements a single-cycle processor.  
 Simulate the processor using a basic test program.  
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LABORATORY EXERCISE 
 
Most instruction set architectures allow assembly language programmers to embed constants into instructions. 
For example, ARMV4 allows the assembly language programmer to write ADD R0, R1, #5.  The constants 
embedded in instruction binary numbers are immediately available to the CPU circuitry once the instruction has 
been retrieved from instruction memory. This improves performance by eliminating an additional read from data 
memory.  

Modern RISC instruction set architectures use fixed-width instruction binary numbers. ARMV4 encodes every 
instruction as a 32-bit binary number. Within these 32-bits, bit fields identify the instruction, the location of data, 
control information for the CPU circuit, and any constants used in the instruction. Thus, the size of the constant 
number bit field in the instruction binary number is fixed to something less than the 32-bit numbers expected by 
the ARMV4 ALU. Different ARMV4 instructions use different sized constants. Arithmetic and bitwise logic 
instructions use 8-bit constants while memory instructions use 12-bit constants and branch instructions use 24-bit 
constants.  

The 8-bit wide immediate constant specified in an ARMV4 arithmetic or bitwise logic instruction appears to limit 
the instruction to a very small unsigned number line from 0 to 255. However, the use of a four-bit rotation field 
gives the instruction much more number line space to use.  If a number doesn’t fit on the eight-bit number line, 
then the assembler attempts to create it by rotating some other 8-bit constant right by two times the specified 
rotation amount. Not all numbers can be created using this rotation technique. If the assembler is not able to 
create a constant, it generates a program image that stores the constant in memory, and it inserts appropriate 
load-from-memory instructions to bring the value into a register. Let’s look at some example ARM instructions. 

Table 1: Example Immediate Mode ARM Data Processing Instructions 
 
ARM INSTRUCTION 

CONSTANT FITS ON 
 8-BIT NUMBER LINE? 

 
8-BIT CONSTANT FIELD 

 
4-BIT ROTATION FIELD 

YES NO 
ADD R1, R2, #136 X  136 0 
SUB R9, R11, #68 X  68 0 
ADD R0, R11, #209 X  209 0 
SUB R6, R1, #380  X 95 15 
ADD R0, R1, #1536  X 6 12 
ADD R1, R2, #457  X convert to load from memory followed by ADD 

 

The first three instructions in Table 1 fit on the normal 8-bit number line. These numbers are encoded into the 
immediate field of the instruction binary number with the rotation field set to zero. The fourth instruction uses a 
constant that does not fit in 8-bits. Here is decimal number 380 as a 32-bit number with the lower 8-bits 
highlighted to show it exceeding the 8-bit number line.  

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 1 0 0 
 
The rotation field is a 4-bit number encoding 0 through 15 two-bit rotations to the right. The assembler attempts 
to find an 8-bit number that can be rotated into the correct position. In this case, 8-bit number 95 can be rotated 
30 positions right.  

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1 1 0 0 
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The same process can be used to form constant 1536. This constant is encoding as an immediate field of six (6) 
rotated right by 12 two-bit rotations.  

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 
 

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 0 
 

The constant 457 cannot be formed. This constant does not result in any 8-bit value that can be rotated.  

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 0 0 1 0 0 1 
 

Figure 1 shows the rotate component inserted above the ALU in the CE1921 ARMV4 arithmetic circuit. The 8-bit 
immediate constant is first extended to 32-bits by the extender and then routed to the rotator by the multiplexer 
controlling the second ALU data operand. The rotator completes rotation to the right by a specified number of 
two-bit rotations.  
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Figure 1: The CE1921 ARMV4 ARITHMETIC CIRCUIT 
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Use the skeleton code provided on the next page to guide your work as you complete the VHDL description for the 
CE1921 extender component.  

COMPONENT BEHAVIOR 
 

 

 
B = NUM rotated right by ROT two-bit rotations 
 

SIMULATION REQUIREMENTS  
 

 Write one arbitrary binary value onto NUM.  
 Write a count sequence on ROT through simulation time.  
 Simulation verifies that NUM has been correctly rotated.  

 
 

SUBMISSION  
 

 You must submit well-commented VHDL code and simulation waveform diagrams using your instructor’s 
preferred submission method. Simulation can be completed using a Quartus university waveform file or a 
Quartus VHDL testbench with Modelsim-Altera waveform results.  

 You must comment on how you know the simulation is correct.  
 You are not allowed to use the same arbitrary numbers as this example.  
 You are not allowed to set the input number to 0.  

 

“I know that this simulation is correct because all values reflect the expected hexadecimal numbers when rotating 
the original binary number (0x000000C6) right by the selected amount. I made a table that shows the rotation 
values in binary and in hexadecimal. The table follows. As you can see…”   
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-- ******************************************************** 
-- * project:     rotator 
-- * filename:    rotator.vhd 
-- * author:      << insert your name here >> 
-- * date:        MSOE Spring Quarter 2020 
-- * provides:    a component to right rotate a 32-bit  
-- *              number a specified number of 2-bit  
-- *              rotations 
-- * approach:    use a multiplexer to route bits 
-- ******************************************************** 
 
-- use library packages  
-- std_logic_1164: 9-valued logic signal voltages  
library ieee; 
use ieee.std_logic_1164.all; 
 
-- function block symbol  
-- NUM is the input 32-bit number 
-- ROT4 is a 4-bit number encoding the number of 2-bit right rotates 
-- B is the rotated output for use by the ALU 
entity ROTATOR is  
port(NUM:  in std_logic_vector(31 downto 0); 
     ROT:  in std_logic_vector(3 downto 0); 
     B: out std_logic_vector(31 downto 0)); 
end entity ROTATOR; 
 
-- circuit description  
architecture MULTIPLEXER of ROTATOR is  
begin 
 
   -- USE CONCATENATION & TO FORM ROTATED OUTPUT 
   -- HINT: make a paper table of bits labled 31 downto 0 
   --       then start rotating right by two-bit rotations  
   --       remember that rotation wraps bits around to the other end 
   with ROT select  
         
        -- rotate right 15 two-bit rotations  
   B <= NUM(29 downto 0)&B"00" when B"1111", 
         
        -- rotate right 14 two-bit rotations 
        NUM(27 downto 0)&B"0000" when B"1110",  
         
        -- << complete other rotations >> 
         
        -- rotate right 3 two-bit rotations 
        NUM(5 downto 0)&B"000000000000000000000000"&NUM(7 downto 6) when B"0011",  
         
        -- << complete other rotations >> 
         
        -- rotate right zero two-bit rotations 
        NUM when others;   
         
 end architecture MULTIPLEXER; 


