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SUMMARY 

 
The semiconductor industry responded to customer demands in the 1980s for a configurable logic circuit that 
could be used to rapidly implement high-speed logic circuitry yet be reconfigurable as the design matures or 
system specifications change. These complex programmable logic devices (CPLDs) and field-programmable gate 
arrays (FPGAs) use tens of thousands of configurable logic blocks, memories, and I/O pins to provide a rich fabric 
for engineers to design complex systems. The configurable logic blocks usually include a multiplexer-based truth 
table (a look-up table) with configurable multiplexer data inputs, a D-type flip-flop, and support logic to enable 
interconnection to other logic blocks. Modern design automation tools allow engineers to use schematics and 
hardware description languages to describe designs. Synthesis tools evaluate designs for errors, create logic 
equations, and compile wiring configuration files used to store configuration binary patterns in the CPLD or FPGA 
configuration memory. The Intel MAX10 FPGA logic element (LE) is shown in Figure 1.  
 

 
 

Figure 1: The MAX10 Configurable Logic Element 
 
Intel markets the MAX10 as a set of chips with differing amounts of configurable logic elements. Each chip begins 
with 10MXX, where XX represents the number of logic elements in thousands. The current MSOE laboratory board 
uses a 10M50 device with 50,000 logic elements. In this laboratory, students implement a system level computer 
architecture with an ARMv4 single-cycle processor, memory-mapped I/O devices, and a reset synchronizer. This 
computer is configured in the Intel 10M50DAF484C7G FPGA on the DE10-Lite laboratory board.  
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PROJECT MANAGEMENT 

 
This project should be completed with the CE1921 basic single-cycle processor. Ensure you have a backup archive 
of your working single-cycle processor before beginning the modifications required for this laboratory. Use Project 
 Archive to make a backup archive.  
 
Read this entire document before beginning your work. The reading will help you understand the changes you will 
make as you progress up the grading scale. Read carefully and when you reread and begin your work, work 
slowly.  
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SYSTEM ARCHITECTURE  

All computers contain the five components listed by John Von Neumann in section two of the classic paper he 
wrote in 1945 entitled First Draft of a Report on the EDVAC. These five components are input, output, arithmetic 
circuits, memory, and control circuits. They are generally organized into the classic system architecture shown in 
Figure 2.  

 

 

 

 

 

 

 

 

Figure 2: The Basic Organization of a Stored-Program Computer 

In this model, computer instructions are stored as binary numbers in memory. The processor fetches the next 
instruction from memory, retrieves stored numbers as data, completes the calculation, and stores the calculated 
result back to memory.  

 The Princeton organization shares one memory for instructions and data through a single connection to 
the processor. This single connection prevents simultaneous instruction and data movement. This 
bottleneck limits performance. It is an optimization of circuit size over speed.  

 The Harvard organization uses two separate memories to enable simultaneous instruction and data 
movement and thus improved performance. This is an optimization of speed over size.  

Inputs and outputs are peripheral devices that provide ways to interact with users. Input devices and output 
devices are accessed using one of two standard methods.  

 A memory-mapped I/O device appears as one or more memory locations in the computer memory. These 
memory locations correspond to control, data, and status registers in the I/O device. Access to these 
registers is made through the standard load and store instructions. The system architecture contains an 
address decoder module that monitors the memory address and asserts the appropriate control signals 
on the registers of the I/O device whenever the device is accessed using a load or store instruction. The 
ARM instruction set specifies that I/O devices must be memory-mapped. Accessing I/O devices exactly like 
memory keeps to the RISC philosophy of regularity implies a simple and smaller design.  

 A port-mapped I/O device is accessed using special I/O instructions defined in the instruction set. The 
device is accessed using these special input and output instructions. The Intel x86 instruction set includes 
the in and out instructions. Added instructions increase instruction set complexity.  
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In this laboratory, two output devices and one input device are added to the ARM single-cycle processor. This 
system architecture is then configured in the MAX10 FPGA on the DE10-Lite laboratory board. The system 
architecture is shown in Figure 3 and the memory and I/O devices are document in the memory-map of Table 1.  

Table 1: The CE1921 ARM Computer Devices 

DEVICE TYPE MEMORY ADDRESS BEHAVIOR 
SEG7 output 0x000000FC Displays the lower five nibbles of its 32-bit wide data register. 
LED output 0x000000F8 Displays the lower ten bits of its 32-bit data register. 
SLIDER input 0x000000F4 Provides the lower ten bits of its 32-bit wide data register. 
MAIN MEMORY mem 0x00000000 – 0x0000001F A 32-location main memory used for general-purpose data 

storage. The size is kept small to enable faster simulation.  
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 Figure 3: The CE1921 DE10-Lite Computer
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MODIFYING THE PROCESSOR 

The basic CE1921 single-cycle processor included a memory circuit stage. Adding memory-mapped I/O devices 
requires generalizing the circuit to allow additional memory-mapped components to provide data to the REGSRC 
multiplexer through the same multiplexer path that the DMEM was connected to. All laboratory exercises are 
modifications and additions within your single-cycle processor project. 

1. Replace the data memory component in your single-cycle processor with a memory address output bus, a 
memory data output bus, and a memory data input bus as shown in Figure 4. Note all you are doing is 
removing DMEM and adding these busses as shown between the execute and WB mux. Green text can be 
added using the schematic editor text toolbar icon. 

 

Figure 4: Memory busses replace the memory circuit in the single-cycle processor 

2. Add an active-low MEMRD output to the controller. This signal activates when executing LDR. 
3. Use File  Create/Update  Create Symbol File to update the controller component symbol.  
4. Replace the old controller symbol with the new one in the top-level diagram.  
5. Add processor outputs for all control signals, the ALU status signals, and the fetch stage signals as shown 

in Figure 5. These outputs will facilitate both simulation and FPGA debugging.  

 

Figure 5: The Processor Signal Outputs 
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6. Create a new component symbol for the single-cycle processor using File  Create/Update  Create 
Symbol File. This component will be integrated into a system level diagram. The component should look 
something like Figure 6 but the signals may be in different order based on how you placed inputs and 
outputs in your schematic diagram.  

 

Figure 6: The Single-Cycle Processor Symbol 

7. Convert all registers to asynchronous active-low reset and rising-edge sample. This change impacts the 
PC register, each register in the register file, and the current program status register. Synchronous reset 
depends on the clock edge. But, what happens to the computer if the clock fails? What happens 
immediately after power-up as the clock circuitry is stabilizing its outputs? Asynchronous reset allows the 
processor to reset to a known starting state if the clock fails. It also allows the processor to be held in 
reset by other system level components as the processor clock circuitry stabilizes after power-up. Figure 7 
shows example of the required changes to each VHDL file that contains a clock.  Signal names may differ 
and of course the reset and sample behaviors may vary across your files. Also remember that you are not 
adding any new inputs or outputs to the VHDL files. Thus, you do not need to update component symbols 
or rewire schematics. You are only changing the reset behavior of already existing components.  

PROGRAM COUNTER REGISTER CHANGE REGISTER FILE CHANGES 

  

Figure 7: Asynchronous Reset Logic Added to PC and R0 in the Register File as Examples 



 
CE1921: COMPUTER ARCHITECTURE 
SINGLE-CYCLE FPGA IMPLEMENTATION 

 

 
Dr. Russ Meier, Milwaukee School of Engineering, Last Update: May 15, 2020 

SEVEN-SEGMENT OUTPUT DEVICE     (SEG7DECODE.VHD, SEG7.BDF) 

1. Complete the provided skeleton VHDL code for a seven-segment display decoder that generates six 
output busses. Each output bus carries the voltages to turn on the display LEDs of one seven-segment 
display. The decoder accepts a 32-bit input bus but only displays the lower six hex nibbles of the eight 
total nibbles because the DE10-Lite FPGA board has six seven-segment displays. The DE10-Lite has seven-
segment LEDs that are active-low. Each output bus should correspond to its similarly named LED in Figure 
8. The DP LED is bit 7 of the bus. Use the component shown in Figure 9 to guide the entity description. 
When finished, create the symbol file using File  Create/Update  Create Symbol File.  

 

Figure 8: The DE10-Lite 7-segment LED arrangement  

2. Create the SEG7 output device shown in Figure 9 as a new schematic block diagram file within your 
project. Use the seven-segment decoder and a 32-bit register with active-low asynchronous reset, active-
low synchronous load, and rising-edge sample. You will need to write this VHDL REG32 component. It is 
identical to the PC register you have already created but should be a new component with the proper 
name. This data register will be memory-mapped to address 0x000000FC as shown in Table 1. The 
mapping will be done in a later component and does not impact this stage of the design. If desired, the 
green text label can be added to your schematic using the text icon from the schematic editor toolbar. 
Name the schematic diagram SEG7 and then create the symbol file (File  Create/Update …) for use in 
other schematics. The design is shown in Figure 9.  

 

Figure 9: The SEG7 Output Device with Decoder and Data Register 
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LED OUTPUT DEVICE          (LED.BDF) 

1. Create the LED output device as a schematic block diagram shown in Figure 10 using the 32-bit register 
component. This data register will be memory-mapped to address 0x000000F8 as shown in Table 1. The 
mapping will be done in a later component and does not impact this state of the design. Name the 
schematic diagram LED and then create the symbol file (File  Create/Update …) for use in other 
schematics. The design is shown in Figure 10. Only the lower ten bits of the 32-bit number stored to the 
LED data register are used because the DE10-Lite only contains ten LEDs.  

 

Figure 10: The LED Output Device 

ADDRESS DECODER        (ADDRESSDECODER.VHD) 

Complete the skeleton VHDL code for the system architecture address decoder and then use File  
Create/Update  Create Symbol Files to make its schematic block diagram symbol. This component requires the 
processor address bus, the processor MEMRD control signal, and the processor MEMWR control signal as inputs. It 
outputs individual load signals for memory and the I/O device registers. It also controls the system-level data input 
multiplexer. The behavior is summarized in Table 2. Examine ADDR row one. If the memory address is in the range 
of the data memory and the MEMRD and MEMWR control signals show the processor is executing STR then the 
address decoder commands the data memory to store data by asserting LD2. Examine ADDR row five. If the 
memory address is the address of the seven-segment display data register, and the processor is executing STR then 
the address decoder commands the data register to store data by asserting LD0. The only time DATAS is not a 
don’t care is when MEMRD shows the processor executing a LDR instruction. During LDR, the address decoder 
routes either the memory or the DE10 slider values as the processor data input.  

Table 2: The Address Decoder Truth Table 

INPUTS  OUTPUTS 
DMEM LED SEG7  

ADDR MEMRD MEMWR ACTION LD2 LD1 LD0 DATAS 
0x00000000 – 0x0000001F 1 0 STR TO MEM 0 1 1 - 
0x00000000 – 0x0000001F 0 1 LDR FROM MEM 1 1 1 1 
0x000000F4 0 1 LDR FROM SLIDERS 1 1 1 0 
0x000000F8 1 0 STR TO LED 1 0 1 - 
0x000000FC 1 0 STR TO SEG7 1 1 0 - 
INVALID ACCESS 1 1 NOT ALLOWED 1 1 1 - 
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RESET METASTABILITY SYNCHRONIZER     (SYNCHRONIZER.BDF) 

All register components were converted to asynchronous reset earlier in the laboratory so that the computer can 
be reset even if the clock has stopped due to a failure, power-on stabilization, or for testing. Unfortunately, 
asynchronous signals, such as that from a reset pushbutton, can violate the setup and hold times of registers 
because they occur too close to the edge of the register sample clock. This leads to a condition within the D flip-
flop circuit known as metastability. During metastability, the flip-flop output did not have enough time to sample 
the input voltage before being commanded to stop by the clock edge. As a result, the output may be the incorrect 
value.  

In this laboratory, a pushbutton from the DE10-Lite board provides the system reset signal. The DE10-Lite 
pushbuttons provide logic-0 when pushed. The computer will reset when the user pushes this button because the 
registers were converted to asynchronous active-low reset. But, when the user releases the button, the logic-1 
may occur too close to the clock edge and cause metastable behavior. A synchronizer can help realign the 
pushbutton release so that it does not violate the setup and hold times. The circuit is shown in Figure 11.  

 

Figure 11: The Reset Pushbutton Synchronizer  

The DFF components in Figure 11 have asynchronous reset behavior. Thus, a SYSRST pushbutton press will result in 
a near instantaneous logic-0 hitting the RST signal of the processor and I/O device registers. When the button is 
released, the first DFF may be left in a metastable state but the second should correctly sample the logic-0 cleared 
in the first flip-flop. The hope is that on the next clock edge, the first DFF will correctly sample the logic-1 provided 
by VCC. The second DFF will sample whatever metastable value existed in the first DFF. This could have been a 
logic-1 or logic-0. In the best case, it was already a logic-1 and the reset ends throughout the system. In the worst 
case, the metastable state was logic-0 and a third clock cycle is required to propagate the VCC logic-1 out into the 
system and bring the registers out of reset. Build this synchronizer circuit as a new schematic block diagram within 
your project and then use File  Create/Update  Create Symbol Files to make its schematic block diagram 
symbol.   

INPUT SLIDER DEVICE 

Input is provided to the DE10-Lite Single Cycle Computer using the DE10-Lite slider switches. The switch values are 
sampled on each clock period and stored in a 10-bit register. Complete the skeleton VHDL code for a 10-bit 
register with active-low asynchronous reset and active-low synchronous load.  
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UPDATING THE IROM  

Replace the machine code in your IROM component with the new machine code provided as part of the lab 
assignment. This machine code is the result of assembling the DE10ROM1 TEST PROGRAM.  

DE10ROM1 TEST PROGRAM  
 
main:   MOV R4,#4       ; R4 = memory address 
        MOV R12,#0      ; temp = 0 
        STR R12,[R4]    ; MEM[4] = 0 : init memory 
        MOV R12,#SLIDE  ; address of sliders (.equ SLIDE,0x000000F4) 
        LDR R8,[R12]    ; i = n 
        MOV R9,#0       ; sum = 0 
        CMP R8,#0       ; i=0? 
        BEQ print       ; if yes branch to print 
loop:   ADD R9,R9,R8    ; sum = sum + i 
        SUB R8,R8,#1    ; i = i - 1 
        CMP R8,#0 
        BNE loop 
if:     MOV R10,#0      ; creating FFFFFFE0 
        SUB R10,R10,#32 ; 0 - 32 = -32 = FFFFFFE0 
        AND R10,R9,R10 
        CMP R10,#0 
        BEQ else        ; if (R9 > 32) MEM[4] = 1 
        MOV R10,#1      ; set the 1 
else:   STR R10,[R4]    ; memory[4] = either 1 or 0 
print:  MOV R12,#SEG7   ; seg7 data reg address (.equ SEG7,0x000000fc) 
        STR R9,[R12]    ; seg7 = sum 
        MOV 12,#LED     ; LED reg address (.equ LED,0x000000F8) 
        LDR R3,[R4]     ; get stored memory value back 
        STR R3,[R12]    ; leds = mem[4] : is it >32? LED0 on 
done:   B done 
 

 
DE10-LITE COMPUTER SYSTEM  

1. Implement the CE1921 computer from Figure 3 as a schematic block diagram file called system.bdf.  
2. Set the system.bdf file as the top-level entity by right-clicking system.bdf in project navigator.   
3. Synthesize the design and correct any errors using the third triangle icon in the toolbar – the one with a 

small and gate below it. Move to step four after you corrected all errors.  
4. Assign DE10-Lite chip pins to the system signals shown in the table. All other signals can be unassigned.  

SIGNAL NAME DE10-LITE ASSIGNMENT USER MANUAL PAGE 
CLK MAX10_CLK1_50 24 
SYSRST KEY0 25 
SLIDERS[9..0] SLIDERS[9..0]  26 
LEDS[9..0] LEDR[9..0] 27 
SEG0[7..0] HEX0[7..0] 28 
SEG1[7..0] HEX1[7..0] 28 
SEG2[7..0] HEX2[7..0] 29 
SEG3[7..0] HEX3[7..0] 29 
SEG4[7..0] HEX4[7..0] 29 
SEG5[7..0] HEX5[7..0] 29 
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5. Create a new Design Constraints file. This file contains specifications that we want the 
design automation tool to attempt to achieve. In the laboratory, the only constraint is a 
design that can clock using the 50MHz DE10-Lite oscillator. This means that the final 
circuit must propagate voltages across the logic cells and meet the setup and hold times 
of registers within a 20ns period. Use File  New  Synopsis Design Constraints File. 
Add this statement (use copy-paste) as the only line in the file and accept the default file 
name on save. 
 
create_clock -period 20 [get_ports {clk}] 
 
 

6. Build the design using Processing  Start Compilation. This may take up to six or seven 
minutes to complete. The FPGA compiler is attempting to place and route hundreds of 
system signals.  

7. Program the DE10-Lite board and test your design. Try setting the sliders to 10. The 
result should be hexadecimal 37 on the seven-segment displays and a one on the LEDs. 
Try setting the sliders to fifteen. The result should be hexadecimal 78 on the seven-
segment displays and a one on the LED. Try setting the sliders to 3. The result should be 
6 on the seven-segment displays and a zero on the LEDs.  

DUE DATE 
 
Your work must be demonstrated to the instructor no later than that last day of class. No demonstrations will be 
accepted after that date. Submit a project archive file to the instructor using the preferred solution method. 
Quartus project archive files are made using Project  Create Archive option. The file will reside in your project 
folder and will have the file extension .QAR.  

 


