

CE1921: COMPUTER ARCHITECTURE
SINGLE-CYCLE FPGA IMPLEMENTATION

Dr. Russ Meier, Milwaukee School of Engineering, Last Update: May 15, 2020

SUMMARY

The semiconductor industry responded to customer demands in the 1980s for a configurable logic circuit that
could be used to rapidly implement high-speed logic circuitry yet be reconfigurable as the design matures or
system specifications change. These complex programmable logic devices (CPLDs) and field-programmable gate
arrays (FPGAs) use tens of thousands of configurable logic blocks, memories, and I/O pins to provide a rich fabric
for engineers to design complex systems. The configurable logic blocks usually include a multiplexer-based truth
table (a look-up table) with configurable multiplexer data inputs, a D-type flip-flop, and support logic to enable
interconnection to other logic blocks. Modern design automation tools allow engineers to use schematics and
hardware description languages to describe designs. Synthesis tools evaluate designs for errors, create logic
equations, and compile wiring configuration files used to store configuration binary patterns in the CPLD or FPGA
configuration memory. The Intel MAX10 FPGA logic element (LE) is shown in Figure 1.

Figure 1: The MAX10 Configurable Logic Element

Intel markets the MAX10 as a set of chips with differing amounts of configurable logic elements. Each chip begins
with 10MXX, where XX represents the number of logic elements in thousands. The current MSOE laboratory board
uses a 10M50 device with 50,000 logic elements. In this laboratory, students implement a system level computer
architecture with an ARMv4 single-cycle processor, memory-mapped I/O devices, and a reset synchronizer. This
computer is configured in the Intel 10M50DAF484C7G FPGA on the DE10-Lite laboratory board.

CE1921: COMPUTER ARCHITECTURE
SINGLE-CYCLE FPGA IMPLEMENTATION

Dr. Russ Meier, Milwaukee School of Engineering, Last Update: May 15, 2020

PROJECT MANAGEMENT

This project should be completed with the CE1921 basic single-cycle processor. Ensure you have a backup archive
of your working single-cycle processor before beginning the modifications required for this laboratory. Use Project
 Archive to make a backup archive.

Read this entire document before beginning your work. The reading will help you understand the changes you will
make as you progress up the grading scale. Read carefully and when you reread and begin your work, work
slowly.

CE1921: COMPUTER ARCHITECTURE
SINGLE-CYCLE FPGA IMPLEMENTATION

Dr. Russ Meier, Milwaukee School of Engineering, Last Update: May 15, 2020

SYSTEM ARCHITECTURE

All computers contain the five components listed by John Von Neumann in section two of the classic paper he
wrote in 1945 entitled First Draft of a Report on the EDVAC. These five components are input, output, arithmetic
circuits, memory, and control circuits. They are generally organized into the classic system architecture shown in
Figure 2.

Figure 2: The Basic Organization of a Stored-Program Computer

In this model, computer instructions are stored as binary numbers in memory. The processor fetches the next
instruction from memory, retrieves stored numbers as data, completes the calculation, and stores the calculated
result back to memory.

 The Princeton organization shares one memory for instructions and data through a single connection to
the processor. This single connection prevents simultaneous instruction and data movement. This
bottleneck limits performance. It is an optimization of circuit size over speed.

 The Harvard organization uses two separate memories to enable simultaneous instruction and data
movement and thus improved performance. This is an optimization of speed over size.

Inputs and outputs are peripheral devices that provide ways to interact with users. Input devices and output
devices are accessed using one of two standard methods.

 A memory-mapped I/O device appears as one or more memory locations in the computer memory. These
memory locations correspond to control, data, and status registers in the I/O device. Access to these
registers is made through the standard load and store instructions. The system architecture contains an
address decoder module that monitors the memory address and asserts the appropriate control signals
on the registers of the I/O device whenever the device is accessed using a load or store instruction. The
ARM instruction set specifies that I/O devices must be memory-mapped. Accessing I/O devices exactly like
memory keeps to the RISC philosophy of regularity implies a simple and smaller design.

 A port-mapped I/O device is accessed using special I/O instructions defined in the instruction set. The
device is accessed using these special input and output instructions. The Intel x86 instruction set includes
the in and out instructions. Added instructions increase instruction set complexity.

Processor

Control
Circuits

Arithmetic
Circuits

Inputs Outputs

Memory

CE1921: COMPUTER ARCHITECTURE
SINGLE-CYCLE FPGA IMPLEMENTATION

Dr. Russ Meier, Milwaukee School of Engineering, Last Update: May 15, 2020

In this laboratory, two output devices and one input device are added to the ARM single-cycle processor. This
system architecture is then configured in the MAX10 FPGA on the DE10-Lite laboratory board. The system
architecture is shown in Figure 3 and the memory and I/O devices are document in the memory-map of Table 1.

Table 1: The CE1921 ARM Computer Devices

DEVICE TYPE MEMORY ADDRESS BEHAVIOR
SEG7 output 0x000000FC Displays the lower five nibbles of its 32-bit wide data register.
LED output 0x000000F8 Displays the lower ten bits of its 32-bit data register.
SLIDER input 0x000000F4 Provides the lower ten bits of its 32-bit wide data register.
MAIN MEMORY mem 0x00000000 – 0x0000001F A 32-location main memory used for general-purpose data

storage. The size is kept small to enable faster simulation.

CE1921: COMPUTER ARCHITECTURE
SINGLE-CYCLE FPGA IMPLEMENTATION

Dr. Russ Meier, Milwaukee School of Engineering, Last Update: May 15, 2020

 Figure 3: The CE1921 DE10-Lite Computer

CE1921: COMPUTER ARCHITECTURE
SINGLE-CYCLE FPGA IMPLEMENTATION

Dr. Russ Meier, Milwaukee School of Engineering, Last Update: May 15, 2020

MODIFYING THE PROCESSOR

The basic CE1921 single-cycle processor included a memory circuit stage. Adding memory-mapped I/O devices
requires generalizing the circuit to allow additional memory-mapped components to provide data to the REGSRC
multiplexer through the same multiplexer path that the DMEM was connected to. All laboratory exercises are
modifications and additions within your single-cycle processor project.

1. Replace the data memory component in your single-cycle processor with a memory address output bus, a
memory data output bus, and a memory data input bus as shown in Figure 4. Note all you are doing is
removing DMEM and adding these busses as shown between the execute and WB mux. Green text can be
added using the schematic editor text toolbar icon.

Figure 4: Memory busses replace the memory circuit in the single-cycle processor

2. Add an active-low MEMRD output to the controller. This signal activates when executing LDR.
3. Use File Create/Update Create Symbol File to update the controller component symbol.
4. Replace the old controller symbol with the new one in the top-level diagram.
5. Add processor outputs for all control signals, the ALU status signals, and the fetch stage signals as shown

in Figure 5. These outputs will facilitate both simulation and FPGA debugging.

Figure 5: The Processor Signal Outputs

CE1921: COMPUTER ARCHITECTURE
SINGLE-CYCLE FPGA IMPLEMENTATION

Dr. Russ Meier, Milwaukee School of Engineering, Last Update: May 15, 2020

6. Create a new component symbol for the single-cycle processor using File Create/Update Create
Symbol File. This component will be integrated into a system level diagram. The component should look
something like Figure 6 but the signals may be in different order based on how you placed inputs and
outputs in your schematic diagram.

Figure 6: The Single-Cycle Processor Symbol

7. Convert all registers to asynchronous active-low reset and rising-edge sample. This change impacts the
PC register, each register in the register file, and the current program status register. Synchronous reset
depends on the clock edge. But, what happens to the computer if the clock fails? What happens
immediately after power-up as the clock circuitry is stabilizing its outputs? Asynchronous reset allows the
processor to reset to a known starting state if the clock fails. It also allows the processor to be held in
reset by other system level components as the processor clock circuitry stabilizes after power-up. Figure 7
shows example of the required changes to each VHDL file that contains a clock. Signal names may differ
and of course the reset and sample behaviors may vary across your files. Also remember that you are not
adding any new inputs or outputs to the VHDL files. Thus, you do not need to update component symbols
or rewire schematics. You are only changing the reset behavior of already existing components.

PROGRAM COUNTER REGISTER CHANGE REGISTER FILE CHANGES

Figure 7: Asynchronous Reset Logic Added to PC and R0 in the Register File as Examples

CE1921: COMPUTER ARCHITECTURE
SINGLE-CYCLE FPGA IMPLEMENTATION

Dr. Russ Meier, Milwaukee School of Engineering, Last Update: May 15, 2020

SEVEN-SEGMENT OUTPUT DEVICE (SEG7DECODE.VHD, SEG7.BDF)

1. Complete the provided skeleton VHDL code for a seven-segment display decoder that generates six
output busses. Each output bus carries the voltages to turn on the display LEDs of one seven-segment
display. The decoder accepts a 32-bit input bus but only displays the lower six hex nibbles of the eight
total nibbles because the DE10-Lite FPGA board has six seven-segment displays. The DE10-Lite has seven-
segment LEDs that are active-low. Each output bus should correspond to its similarly named LED in Figure
8. The DP LED is bit 7 of the bus. Use the component shown in Figure 9 to guide the entity description.
When finished, create the symbol file using File Create/Update Create Symbol File.

Figure 8: The DE10-Lite 7-segment LED arrangement

2. Create the SEG7 output device shown in Figure 9 as a new schematic block diagram file within your
project. Use the seven-segment decoder and a 32-bit register with active-low asynchronous reset, active-
low synchronous load, and rising-edge sample. You will need to write this VHDL REG32 component. It is
identical to the PC register you have already created but should be a new component with the proper
name. This data register will be memory-mapped to address 0x000000FC as shown in Table 1. The
mapping will be done in a later component and does not impact this stage of the design. If desired, the
green text label can be added to your schematic using the text icon from the schematic editor toolbar.
Name the schematic diagram SEG7 and then create the symbol file (File Create/Update …) for use in
other schematics. The design is shown in Figure 9.

Figure 9: The SEG7 Output Device with Decoder and Data Register

CE1921: COMPUTER ARCHITECTURE
SINGLE-CYCLE FPGA IMPLEMENTATION

Dr. Russ Meier, Milwaukee School of Engineering, Last Update: May 15, 2020

LED OUTPUT DEVICE (LED.BDF)

1. Create the LED output device as a schematic block diagram shown in Figure 10 using the 32-bit register
component. This data register will be memory-mapped to address 0x000000F8 as shown in Table 1. The
mapping will be done in a later component and does not impact this state of the design. Name the
schematic diagram LED and then create the symbol file (File Create/Update …) for use in other
schematics. The design is shown in Figure 10. Only the lower ten bits of the 32-bit number stored to the
LED data register are used because the DE10-Lite only contains ten LEDs.

Figure 10: The LED Output Device

ADDRESS DECODER (ADDRESSDECODER.VHD)

Complete the skeleton VHDL code for the system architecture address decoder and then use File
Create/Update Create Symbol Files to make its schematic block diagram symbol. This component requires the
processor address bus, the processor MEMRD control signal, and the processor MEMWR control signal as inputs. It
outputs individual load signals for memory and the I/O device registers. It also controls the system-level data input
multiplexer. The behavior is summarized in Table 2. Examine ADDR row one. If the memory address is in the range
of the data memory and the MEMRD and MEMWR control signals show the processor is executing STR then the
address decoder commands the data memory to store data by asserting LD2. Examine ADDR row five. If the
memory address is the address of the seven-segment display data register, and the processor is executing STR then
the address decoder commands the data register to store data by asserting LD0. The only time DATAS is not a
don’t care is when MEMRD shows the processor executing a LDR instruction. During LDR, the address decoder
routes either the memory or the DE10 slider values as the processor data input.

Table 2: The Address Decoder Truth Table

INPUTS OUTPUTS
DMEM LED SEG7

ADDR MEMRD MEMWR ACTION LD2 LD1 LD0 DATAS
0x00000000 – 0x0000001F 1 0 STR TO MEM 0 1 1 -
0x00000000 – 0x0000001F 0 1 LDR FROM MEM 1 1 1 1
0x000000F4 0 1 LDR FROM SLIDERS 1 1 1 0
0x000000F8 1 0 STR TO LED 1 0 1 -
0x000000FC 1 0 STR TO SEG7 1 1 0 -
INVALID ACCESS 1 1 NOT ALLOWED 1 1 1 -

CE1921: COMPUTER ARCHITECTURE
SINGLE-CYCLE FPGA IMPLEMENTATION

Dr. Russ Meier, Milwaukee School of Engineering, Last Update: May 15, 2020

RESET METASTABILITY SYNCHRONIZER (SYNCHRONIZER.BDF)

All register components were converted to asynchronous reset earlier in the laboratory so that the computer can
be reset even if the clock has stopped due to a failure, power-on stabilization, or for testing. Unfortunately,
asynchronous signals, such as that from a reset pushbutton, can violate the setup and hold times of registers
because they occur too close to the edge of the register sample clock. This leads to a condition within the D flip-
flop circuit known as metastability. During metastability, the flip-flop output did not have enough time to sample
the input voltage before being commanded to stop by the clock edge. As a result, the output may be the incorrect
value.

In this laboratory, a pushbutton from the DE10-Lite board provides the system reset signal. The DE10-Lite
pushbuttons provide logic-0 when pushed. The computer will reset when the user pushes this button because the
registers were converted to asynchronous active-low reset. But, when the user releases the button, the logic-1
may occur too close to the clock edge and cause metastable behavior. A synchronizer can help realign the
pushbutton release so that it does not violate the setup and hold times. The circuit is shown in Figure 11.

Figure 11: The Reset Pushbutton Synchronizer

The DFF components in Figure 11 have asynchronous reset behavior. Thus, a SYSRST pushbutton press will result in
a near instantaneous logic-0 hitting the RST signal of the processor and I/O device registers. When the button is
released, the first DFF may be left in a metastable state but the second should correctly sample the logic-0 cleared
in the first flip-flop. The hope is that on the next clock edge, the first DFF will correctly sample the logic-1 provided
by VCC. The second DFF will sample whatever metastable value existed in the first DFF. This could have been a
logic-1 or logic-0. In the best case, it was already a logic-1 and the reset ends throughout the system. In the worst
case, the metastable state was logic-0 and a third clock cycle is required to propagate the VCC logic-1 out into the
system and bring the registers out of reset. Build this synchronizer circuit as a new schematic block diagram within
your project and then use File Create/Update Create Symbol Files to make its schematic block diagram
symbol.

INPUT SLIDER DEVICE

Input is provided to the DE10-Lite Single Cycle Computer using the DE10-Lite slider switches. The switch values are
sampled on each clock period and stored in a 10-bit register. Complete the skeleton VHDL code for a 10-bit
register with active-low asynchronous reset and active-low synchronous load.

CE1921: COMPUTER ARCHITECTURE
SINGLE-CYCLE FPGA IMPLEMENTATION

Dr. Russ Meier, Milwaukee School of Engineering, Last Update: May 15, 2020

UPDATING THE IROM

Replace the machine code in your IROM component with the new machine code provided as part of the lab
assignment. This machine code is the result of assembling the DE10ROM1 TEST PROGRAM.

DE10ROM1 TEST PROGRAM

main: MOV R4,#4 ; R4 = memory address
 MOV R12,#0 ; temp = 0
 STR R12,[R4] ; MEM[4] = 0 : init memory
 MOV R12,#SLIDE ; address of sliders (.equ SLIDE,0x000000F4)
 LDR R8,[R12] ; i = n
 MOV R9,#0 ; sum = 0
 CMP R8,#0 ; i=0?
 BEQ print ; if yes branch to print
loop: ADD R9,R9,R8 ; sum = sum + i
 SUB R8,R8,#1 ; i = i - 1
 CMP R8,#0
 BNE loop
if: MOV R10,#0 ; creating FFFFFFE0
 SUB R10,R10,#32 ; 0 - 32 = -32 = FFFFFFE0
 AND R10,R9,R10
 CMP R10,#0
 BEQ else ; if (R9 > 32) MEM[4] = 1
 MOV R10,#1 ; set the 1
else: STR R10,[R4] ; memory[4] = either 1 or 0
print: MOV R12,#SEG7 ; seg7 data reg address (.equ SEG7,0x000000fc)
 STR R9,[R12] ; seg7 = sum
 MOV 12,#LED ; LED reg address (.equ LED,0x000000F8)
 LDR R3,[R4] ; get stored memory value back
 STR R3,[R12] ; leds = mem[4] : is it >32? LED0 on
done: B done

DE10-LITE COMPUTER SYSTEM

1. Implement the CE1921 computer from Figure 3 as a schematic block diagram file called system.bdf.
2. Set the system.bdf file as the top-level entity by right-clicking system.bdf in project navigator.
3. Synthesize the design and correct any errors using the third triangle icon in the toolbar – the one with a

small and gate below it. Move to step four after you corrected all errors.
4. Assign DE10-Lite chip pins to the system signals shown in the table. All other signals can be unassigned.

SIGNAL NAME DE10-LITE ASSIGNMENT USER MANUAL PAGE
CLK MAX10_CLK1_50 24
SYSRST KEY0 25
SLIDERS[9..0] SLIDERS[9..0] 26
LEDS[9..0] LEDR[9..0] 27
SEG0[7..0] HEX0[7..0] 28
SEG1[7..0] HEX1[7..0] 28
SEG2[7..0] HEX2[7..0] 29
SEG3[7..0] HEX3[7..0] 29
SEG4[7..0] HEX4[7..0] 29
SEG5[7..0] HEX5[7..0] 29

CE1921: COMPUTER ARCHITECTURE
SINGLE-CYCLE FPGA IMPLEMENTATION

Dr. Russ Meier, Milwaukee School of Engineering, Last Update: May 15, 2020

5. Create a new Design Constraints file. This file contains specifications that we want the
design automation tool to attempt to achieve. In the laboratory, the only constraint is a
design that can clock using the 50MHz DE10-Lite oscillator. This means that the final
circuit must propagate voltages across the logic cells and meet the setup and hold times
of registers within a 20ns period. Use File New Synopsis Design Constraints File.
Add this statement (use copy-paste) as the only line in the file and accept the default file
name on save.

create_clock -period 20 [get_ports {clk}]

6. Build the design using Processing Start Compilation. This may take up to six or seven
minutes to complete. The FPGA compiler is attempting to place and route hundreds of
system signals.

7. Program the DE10-Lite board and test your design. Try setting the sliders to 10. The
result should be hexadecimal 37 on the seven-segment displays and a one on the LEDs.
Try setting the sliders to fifteen. The result should be hexadecimal 78 on the seven-
segment displays and a one on the LED. Try setting the sliders to 3. The result should be
6 on the seven-segment displays and a zero on the LEDs.

DUE DATE

Your work must be demonstrated to the instructor no later than that last day of class. No demonstrations will be
accepted after that date. Submit a project archive file to the instructor using the preferred solution method.
Quartus project archive files are made using Project Create Archive option. The file will reside in your project
folder and will have the file extension .QAR.

