

ARCHITECTURE BASICS

Dr. Russ Meier Milwaukee School of Engineering

CATEGORIES OF COMPUTERS

- Servers
 - back-office machines
 - drive internet traffic and database access
 - low visibility
 - targeted marketing to IT professionals
 - market variation: Wintel, Apple, Linux, Unix
 - smallest category of the computer industry
 - 3 million shipped in 2018 (statista.com)

CATEGORIES OF COMPUTERS

- Personal Computers
 - general purpose computers
 - most familiar category to general public
 - highly visible marketing campaigns
 - consumers buy these as "computers"
 - market dominated by Wintel and Apple
 - middle category of the computer industry
 - 400 million tablets, laptops, PCs shipped in 2018 (statista.com)
 - 1.6 billion smart phones shipped in 2018

CATEGORIES OF COMPUTERS

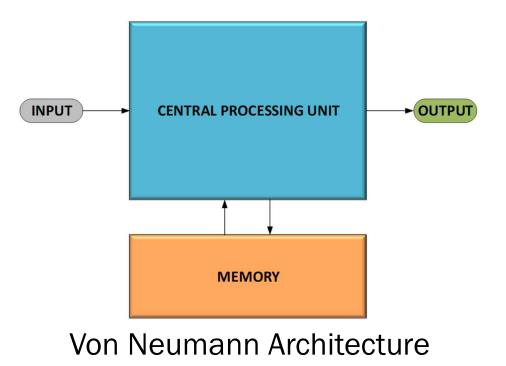
- Embedded Computer Systems
 - special-purpose computer-controlled systems
 - largest category of the computer industry
 - very low visibility to average member of the public
 - computers around people without recognition
 - largest section of the computer industry
 - tens of billions shipped in 2018
 (icinsights.com, Research Bulletin, MCU sales)

CATEGORY REQUIREMENTS

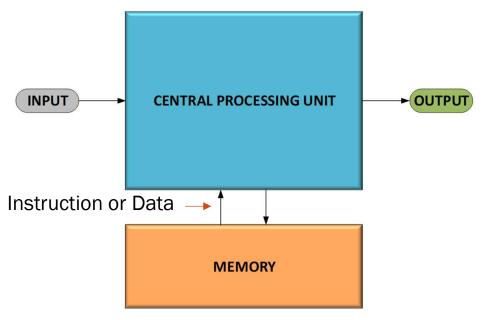
- Personal computers:
 - rich multi-media interaction
 - easy-to-use input and output devices
- Servers:
 - high-speed database access
 - high-speed networking
 - multi-user processing
- Embedded systems
 - Small footprint
 - Low power
 - Low cost

DESIGN OPTIMIZATION

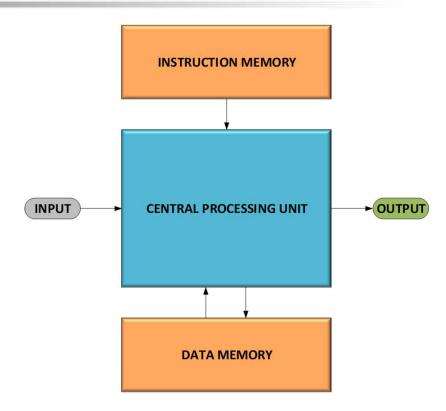
- Different requirements lead to different choices
- Engineering design optimizes:
 - speed
 - size
 - power
 - cost
- Computer architecture is design and thus a large part of architecture is optimizing based on requirements.



- Input
- Output
- Memory
- Arithmetic circuits
- Control circuits
- Derives from the EDVAC project of Eckert and Mauchly
- First stated in a paper by John Von Neumann



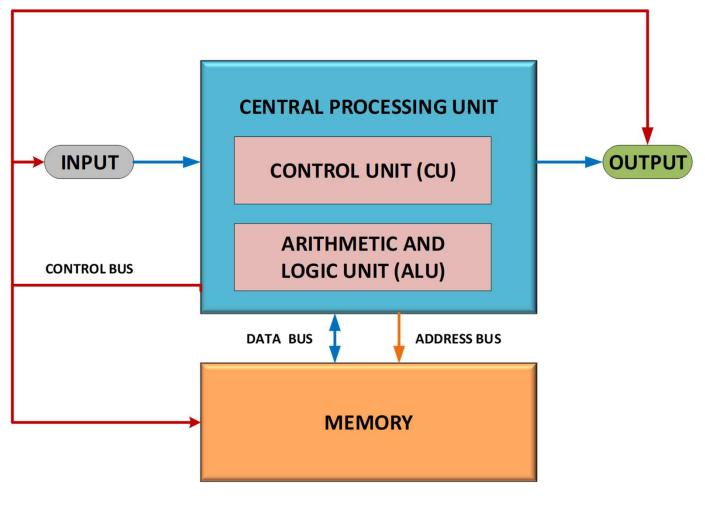
- The EDVAC paper documents the first stored program computer.
- Stored program computers hold a program as voltages in memory.
- Von Neumann's paper influenced all later machines – including those built today.


- Memory is an expensive part of a computer.
- Von Neumann proposes one memory for both data and instruction storage.
- This limits performance because at any time the memory is providing the CPU with either a new instruction or a new piece of data.
- Performance limit is the Von Neumann bottleneck.

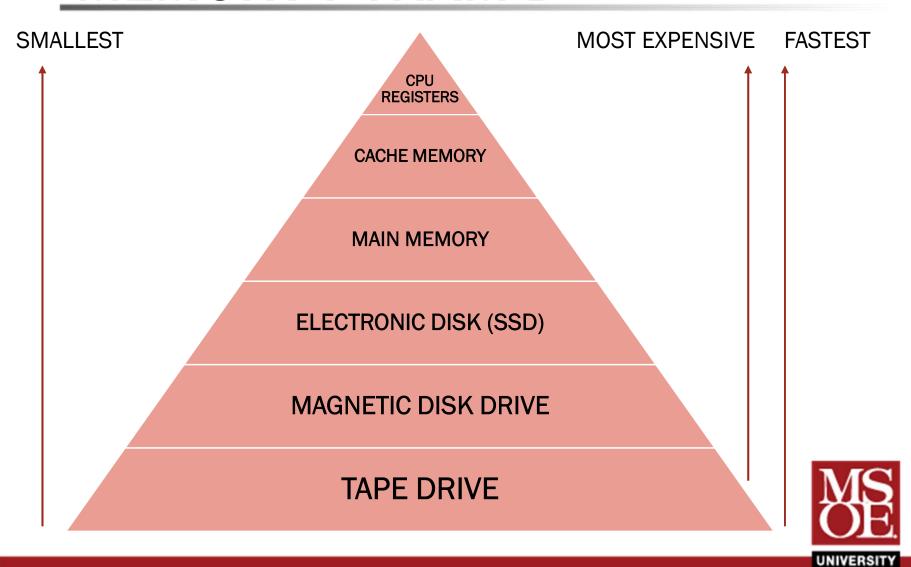
Von Neumann Architecture

- One way to increase performance is to remove the von Neumann bottleneck.
- Howard Aiken proposed a machine called the Harvard Mark 1 that used separate memories for instructions and data.

Harvard Architecture

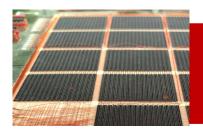

CENTRAL PROCESSING UNIT (CPU)

- Two parts from the von Neumann description
 - An arithmetic and logic unit (ALU) completes mathematics
 - A control unit (CU) decodes instructions to control calculation
- The CPU creates three numerical busses
 - An address bus requests access to memory locations
 - A data bus is used to move data between components
 - A control bus contains signals controlling components



CENTRAL PROCESSING UNIT (CPU)

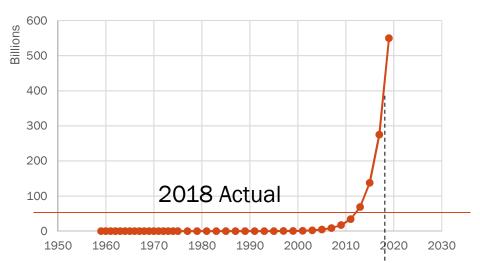
MEMORY PYRAMID


HISTORICAL MEMORY PERIODS

Vacuum Tube Memory

Mercury Acoustic Delay Memory

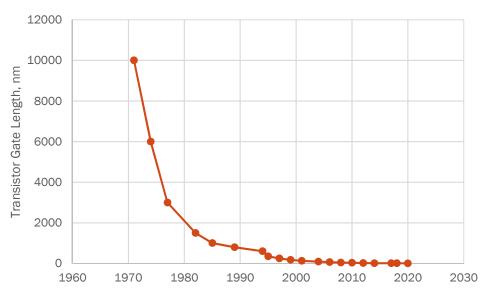
Magnetic Core Memory


Semiconductor Chip Memory

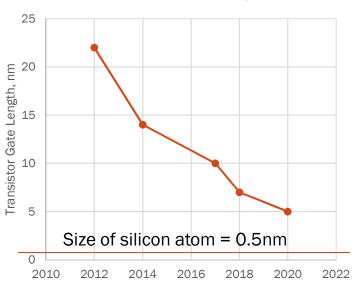
MOORE'S LAW

- Gordon Moore, Co-founder of Fairchild Semiconductor and Intel predicted integrated transistors would double every year (1965 paper)
- Modified to 2 years (1975)
- Moore's Law slowed in the twenty-first century.
- The largest chip in 2018 was a 50 billion transistor FPGA
- Some say we are entering the post-Moore's Law Era.

INTEGRATED TRANSISTORS



Doubling every 1 year through 1975. Doubling every 2 years after 1975.

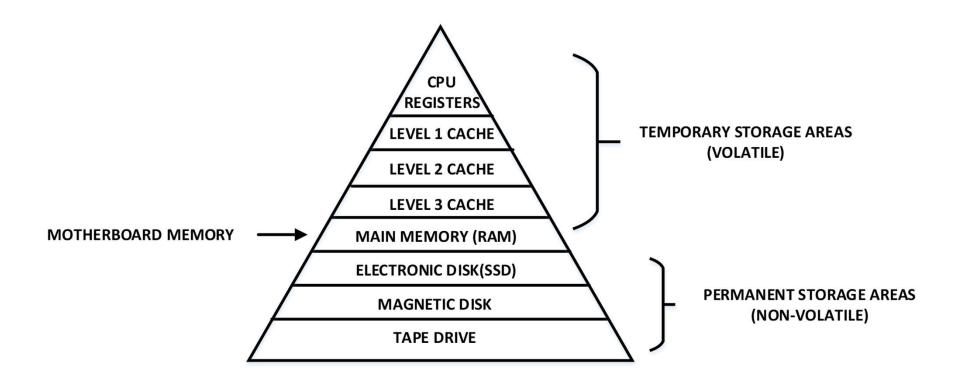


MOORE'S LAW

Semiconductor Fabrication Process

Recent Semiconductor Process Advancement, nm

MICROPROCESSOR


- Integrated Circuit Central Processing Unit
 - arithmetic and logic unit
 - control circuits
 - CPU register file
- Modern processors also include cache memory
 - part of data flow control mechanism
 - not considered user memory

MODERN MEMORY PYRAMID

Modern microprocessors include the registers and the cache memory levels.

COMPUTER ARCHITECTURE

- Definition
 - blueprint of a computer system
 - multiple subcategories of blueprinting
- Subcategories
 - instruction set architecture (ISA)
 - micro-architecture (μA)
 - system architecture

INSTRUCTION SET ARCHITECTURE

- Programmer's view of the computer
- Defines machine instructions
- Defines data locations
 - CPU register set
 - Memory size
 - Memory access modes

MICROARCHITECTURE

- Integrated circuit implementation of an ISA
- Interconnects components to achieve ISA
- Result is an integrated circuit microprocessor
- Example companies

• Intel ARM

AMD Freescale

NVIDIA IBM

Motorola MIPS

SYSTEM ARCHITECTURE

- Board level design
- Interconnects chips to complete a computer
- Example companies
 - Dell
 - Apple
 - HP

MICROPROCESSOR

- Integrated circuit processor
- Optimization:
 - speed: generally high speed devices (GHz)
 - size: does not optimize size of system architecture
 - power: computes large width results (32, 64 bits)
 - cost: high speed increases cost
- Uses:
 - Personal computers
 - Servers
 - Some types of embedded systems

MICROCONTROLLER

- integrated circuit computer
- single chip computer
- all five parts of the computer on one chip
- optimization:
 - size: allows small system architecture
 - speed: slower (MHz)
 - power: smaller bit-widths (8, 16, 32 bits)
 - cost: lower speed and bit-width lowers cost

EXAMPLES

MICROPROCESSORS

• Intel: 4004 (1971), 8008, 8086/88,

80286, 80386, Pentium, Core Duo,

Core i5, Core i7

• Motorola: 68000, 68020, 68030, 68040

• PowerPC: PPC603, PPC604, PPC615, PPC640

• MIPS: R2000, R3000, R8000, R10000

• Sparc: Sparc, microSparc, UltraSparc

ARM: ARM cores from many manufacturers

• Others: DEC Alpha, Zilog Z80, MOS65C02

EXAMPLES

MICROCONTROLLERS

• Freescale: MC68HC11, MC68HC12, ColdFire

• Intel: 8051, 80186

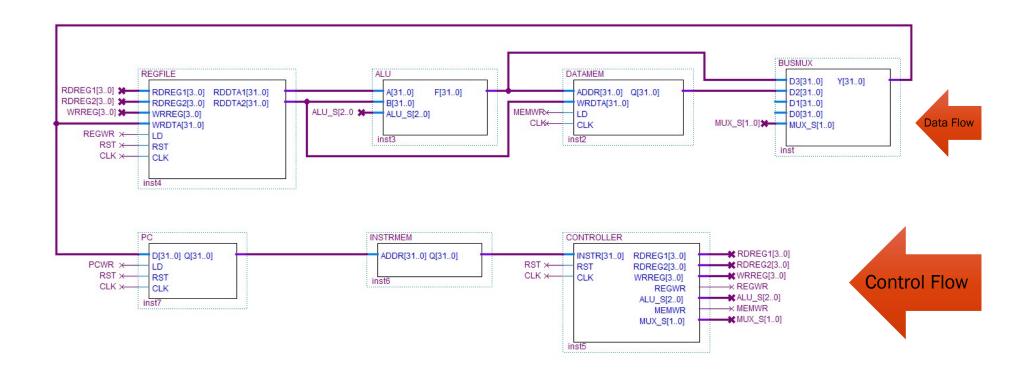
• Atmel: Atmega32, Atmega64, Atmega128

• Microchip: PICmicro, PIC16, PIC32 families

• ARM: ARM cores in many custom μC ICs

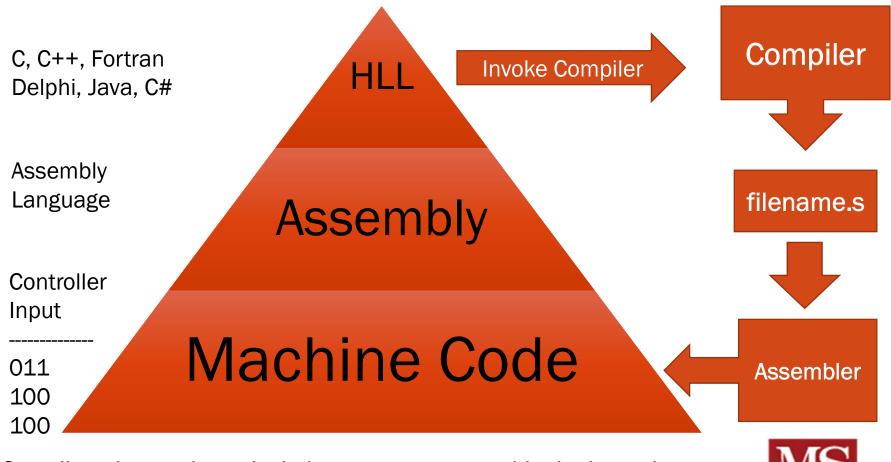
• MIPS: MIPS cores in many custom μC IC

Rabbit: Rabbit2000



CHANGE CE1911 SPC TO µP

- Replace special purpose equation FSMs with a general purpose instruction decoder.
- Replace REGA and REGB with larger set of registers.
- Add instruction memory to hold commands.
- Add data memory for significant numeric storage.



CHANGE CE1911 SPC TO µP

LANGUAGE PYRAMID

Compilers do not always include a separate assembler in the tool set. Some compilers write machine code directly from the high level language.

- J. von Neumann, "First draft of a report on the EDVAC," in *IEEE Annals of the History of Computing*, vol. 15, no. 4, pp. 27-75, 1993
- M. D. Godfrey and D. F. Hendry, "The computer as von Neumann planned it," in *IEEE Annals of the History of Computing*, vol. 15, no. 1, pp. 11-21, 1993
- R. E. Smith, "A Historical Overview of Computer Architecture," in *Annals of the History of Computing*, vol. 10, no. 4, pp. 277-303, Oct.-Dec. 1988
- Burks, A. W., Golstine, H. H., and von Neumann, J., "Preliminary Discussion of the Logical Design of an Electronic Computing Instrument", Computer Structures – Readings and Examples, McGraw Hill, New York, pp. 92 - 119

