
INSTRUCTION SETS
Dr. Russ Meier

Milwaukee School of Engineering

1

DEFINITION

• Instruction set architecture is a blueprint defining:

• each machine instruction
• the ALU registers,
• memory size
• how memory address are calculated

• This is the programmer’s view of the machine.

Instruction set architecture is a blueprint that begins the design of any computer. The
instruction set architecture defines the machine the way the programmer would see it and
not the way a circuit designer would see it.

• The instruction set architecture uses tables, lists, words, and binary numbers to
document what every instruction looks like.

• The instruction set architecture defines what CPU registers are available to store data
before it is moved to larger memories.

• The instruction set architecture may suggest how programmers group registers into sets
and use them when programming the machine.

• The instruction set architecture describes abstractly how big memory is and how
memory is accessed by instructions.

This programmer’s view of the machine is often called the programmer’s model. It is this
programmer’s model that must then be implemented by circuit designers.

2

BASIC ISA CATEGORIES

• Complex Instruction Set Computers (CISC) provide
arithmetic instructions that can access CPU
registers or memory locations.

• Reduced Instruction Set Computers (RISC)
provide arithmetic instructions that can only
access CPU registers.

Instruction set architectures are placed into two categories called CISC and RISC. The
categorization is done based on the arithmetic instructions. The instruction set is called
complex if arithmetic instructions can access both CPU registers and main memory. It is
called reduced if arithmetic instructions can access only CPU registers.

3

CISC CHARACTERISTICS

• arithmetic instructions access registers and memory

• small number of ALU registers

• potentially hundreds of instructions

• many memory addressing modes

• dynamic micro-coding by the hardware

MUL Mem[Address 1], Memory[Address 2]. A Mem[Address 1]
B  Mem[Address 2]
B  A * B
Mem[Address 1]  B

Becomes

Historically, memory was expensive and thus more limited than what we have today. The
total set of binary numbers that form a program stored in instruction memory is called the
instruction memory image. Complex instructions kept the instruction memory image small
at a time when memory was limited. By the late 1970s, most microprocessors
implemented complex instruction sets. CISC machines have these general characteristics:

• The most important identifying characteristic is arithmetic instructions that can access
both ALU registers and memory.

• Another characteristic is a small number of ALU registers – generally less than 20 and
sometime far fewer.

• CISC machines usually provided hundreds of instructions. The original x86 ISA had just
over 80 instructions and current versions of the x86-64 ISA have over 1500 instructions.
The Motorola 68000 ISA had just over 100 instructions.

• Another characteristic is how programmers specify memory locations as addresses. CISC
machines provide many addressing modes. Lots of addressing modes adds complexity
to address calculation which leads to delay.

• A final characteristic is dynamic code generation by the hardware. Because the complex
instruction specified complex behavior, the circuitry had to automatically rewrite the
instruction into a set of simpler steps. This is called micro-coding. Micro-coding adds
complexity to the circuit design. An example of a micro-coding is shown as the MUL

4

Mem[Address 1], Memory[Address 2] is converted automatically by the circuit into four
simpler instructions using ALU registers A and B and requiring at least four clock periods.

Remember the architectural rule of thumb: simple  fast. Because CISC machines accessed
slower main memory, had to identify and microcode hundreds of instructions, and calculate
memory addresses in multiple ways, circuit delay was significant.

4

RISC CHARACTERISTICS

• derives from late 1970s and early 1980s research

• key research results from studying complex machines

• programmers tended to use a small set of instructions
• programmers rarely used large constants
• programmers avoided complex addressing modes
• complex instructions were slow when implemented

By the late 1970s, memory densities were beginning to rise as the industry kept pace with
Moore’s Law. Several key researchers in computer architecture began to ask if it made
sense to provide so many instructions and addressing modes. Working independently,
these researchers discovered the key points noted in this slide.

• Assembly language programmers tended to use a smaller set of faster basic instructions.
• Assembly programmers rarely used large constants in for-loops or comparisons.

Sometimes, yes, but on the average constant numbers tended to be smaller.
• Many of the complex addressing modes confused assembly language programmers and

they didn’t use them.
• Complex circuitry had significant delay and didn’t scale well to increased clock speeds.

These researchers proposed a change in the way machine design should progress as
companies moved forward. This is known as the RISC movement.

• A team of people at IBM (led by John Cocke) investigated reducing the complexity of the
instruction set. This led to the IBM 801 in 1980. This was not well publicized as it was an
internal company project.

• An academic team at Stanford (led by John Hennessey) began a project in 1981 that led
to the founding in 1984 of MIPS Computer Systems – a fabless company that designed

5

the MIPS ISA and microarchitectures it licensed to other manufacturers.
• An academic team at the University of California Berkeley (led by David Patterson) began a

project in 1980. David Patterson defined the acronym RISC. His project results in the the
RISC 1, which is later commercialized by Sun Microsystems as the SPARC ISA and
microarchitectures.

• Cocke, Hennessey and Patterson are now considered the pioneers that encouraged the
industry to rethink design.

5

RISC PIONEERS

• RISC PIONEERS

PIONEER ORGANIZATION ISA YEAR

John Cocke IBM 801 1980

John Hennessey Stanford MIPS 1981

David Patterson Berkeley RISC 1980

These researchers proposed a change in the way machine design should progress as
companies moved forward. This is known as the RISC movement.

• A team of people at IBM (led by John Cocke) investigated reducing the complexity of the
instruction set. This led to the IBM 801 in 1980. This was not well publicized as it was an
internal company project.

• An academic team at Stanford (led by John Hennessey) began a project in 1981 that led
to the founding in 1984 of MIPS Computer Systems – a fabless company that designed
the MIPS ISA and microarchitectures it licensed to other manufacturers.

• An academic team at the University of California Berkeley (led by David Patterson) began
a project in 1980. David Patterson defined the acronym RISC. His project results in the
the RISC 1, which is later commercialized by Sun Microsystems as the SPARC ISA and
microarchitectures.

• Cocke, Hennessey and Patterson are now considered the pioneers that encouraged the
industry to rethink design.

6

MODERN DESIGN RULES

• Regularity implies a simple and smaller design.

• Smaller implies faster.

• Good design sometimes requires compromises.

• Make the common cases fast.

The work of the RISC pioneers led to the industry adopting four philosophical design rules
that Patterson and Hennessey promote well in their textbooks on Computer Architecture.
These rules are stated on this slide. Today, most modern processors are RISC designs built
using these rules.

7

MODERN RISC ISA

• Split-cache Harvard memory organization

• Small number of basic instructions

• Relatively large number of registers (16, 32, 64)

• Simple addressing modes

• register-register arithmetic
• load-store memory access
• no arithmetic directly on memory values

Like CISC machines, there are now identifiable characteristics that have evolved into the
modern RISC instruction set architectures.

• A modified split-cache Harvard memory organization provides on-chip instruction and
data caches. This allows the processor to avoid the memory bottleneck and achieve
higher clock rates.

• A much smaller number of basic instructions are implemented in the circuitry.
• A larger number of registers are provided to the assembly language programmer.
• Simple addressing modes reduce the complexity of address calculation circuitry and

increase speed.

• All data in memory must be loaded into a register before used by the ALU. Any
result from the ALU is put back in a register. It must then be stored to memory
for long-term storage if needed. Arithmetic instructions never directly put values
into memory. This is called the load-store principle or load-store memory
access. Load-store memory access is the defining characteristic of a RISC
machine.

8

CLASSIC RISC ISA EXAMPLES
COMPANY INSTRUCTION SET LEAD ISA ARCHITECT YEAR

IBM RISC 801 John Cocke 1980

Berkeley RISC David Patterson 1981

Stanford MIPS John Hennessy 1983

Acorn Computers Ltd. ARM Sophie Wilson 1985

HP PA-RISC Michael Mahon 1986

IBM POWER John Cocke 1990

DEC ALPHA Richard Sites 1992

This table provides some history RISC architectures for your exploration. There are many
more, of course, but these have played important roles in computer history or are
interesting architecturally because of unique features. We’ve already mentioned that
Hennessey and Patterson both move their ISAs into successful commercial
implementations in the form of MIPS microprocessors and SPARC microprocessors. So, let’s
comment a bit on the other ones.

• The IBM 801 project leads IBM to work with other companies in the Power PC
consortium to create the POWER ISA. This ISA is implemented as microarchitecture in
the PowerPC chips – and become the chip at the heart of the Macintoshes of the 1990s.

• The DEC Alpha ISA is one of the first 64-bit ISAs – and one of my personal favorites.
Digital Equipment Corporation attempted to design a chip that would support its already
popular operating system (VMS) from its earlier generation of CISC processors.

• The HP-PA RISC competed against SPARC in engineering workstations of the late 1980s
and 1990s. Hewlett-Packard’s experience with HP-PA RISC allows it to become a
successful partner with Intel to develop the Itanium ISA (IA64) that Intel used in server-
side machines through the first decades of the 21st century.

Finally, the ARM architecture, designed by Sophie Wilson, has become the most-used
architecture in the world because of its widespread use in the cell-phone and embedded

9

systems market. Billions of ARM microchips are fabricated each year. ARM is a fabless
company – designing the ISA and microarchitectures that is licenses to other companies to
use.

9

KEY POINTS

• Instruction set architecture blueprints the programmer’s model.

• Memory size once required complex instructions to ensure
programs could be stored.

• CISC arithmetic instructions can directly access memory.

• RISC machines implement a load-store memory access model

• The RISC movement of the 1980s changed machine design.

• Modern processors are load-store and thus RISC machines.

This summary slide notes the key points of this presentation. Continue to review this video
as needed. I also encourage you to explore computer history by reading about the people
and ISAs noted in the presentation.

10

