
INSTRUCTION
BINARY NUMBERS

Dr. Russ Meier
Milwaukee School of Engineering

1

INSTRUCTION CATEGORIES

• All instructions can be categorized into:

• load-store: move data from / to memory
• arithmetic-logic: complete calculation
• conditional branch: change instruction memory

address if condition met
• unconditional jump: always change instruction

memory address

All computer instructions can be categorized into four categories based on what type of
operation they do.

• Memory load and store instructions move data between locations in the memory
pyramid.

• Arithmetic and logic instructions calculate results from current pieces of data.
• Branch instructions change the instruction memory address to jump among instructions

in a program.
• Some branches occur only when a certain arithmetic condition has occurred. For

example, branch if the previous calculation produced zero. This type of branch
instruction is called a conditional branch.

• Other branches always calculate a new instruction memory address. For example,
programs jump to subroutines quite often. This doesn’t depend on an arithmetic result.
It just happens. This type of branch is called an unconditional branch.

2

ENCODING INSTRUCTIONS

• Instructions are encoded as binary numbers.

• Binary bit fields encode parts of each instruction.

• Opcodes are bit fields identifying the instruction.

• Operands are bit fields identifying data locations.

• Control bits are bit fields providing control information.

OPCODE SRC 1 SRC 2 DEST SHAMT FUNCT

000000 00101 01101 00111 00000 001101

0x00AD380D

Every machine instruction becomes a binary number stored in instruction memory.

• The binary number is separated into chunks or fields that contain information about the
instruction.

• The field uniquely identifying the instruction as an add, a subtract, a multiply, a move, a
shift, etc. is called the opcode.

• The opcode can be located anywhere within the instruction binary number but is often
found at the most-significant end of the number or the least-significant end.

• The fields identifying the locations of data are called operands. The number of operands
depends on the type of instruction set.

• Finally, control bits give information about the instruction to the CPU. For example, a
control bit might command that the CPU should capture the ALU result flag.

• The fields form the entire binary number stored in instruction memory as voltages.

3

OPCODES
• Opcodes are bit fields identifying instructions.

• The number of instructions, N, determines how many
opcode bits, b, are required to identify it to the CPU.

𝑏 = log 𝑁

𝐿𝑒𝑡 𝑁 = 48 𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑠
𝑏 = 𝑙𝑜𝑔 48 = 5.5850 = 6 𝑏𝑖𝑡 𝑜𝑝𝑐𝑜𝑑𝑒

𝑜𝑝𝑐𝑜𝑑𝑒 𝑠𝑝𝑎𝑐𝑒 = 2 = 64 𝑝𝑜𝑠𝑠𝑖𝑏𝑙𝑒 𝑖𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑠

The number of instructions provided by a machine determines the size of the opcode bit
field. Like all binary counting problems, the size is calculated using a base-2 logarithm. And,
we round up the calculated number of bits because we don’t electrically store fractions of a
bit voltage in digital computers.

• This example shows the calculation for the opcode bit field size for a machine that
provides 48 instructions. Five bits would allow 32 instructions total and 6 bits allows up
to 64 instructions. Because 48 falls between 32 and 64, a 6-bit field must be used to
ensure a complete set of unique binary opcodes.

• The opcode bit field defines the number line of opcode values. We call this number line
the opcode space. In this example, the total number of possible instructions, and thus
the size of the opcode space, is 64.

• Machines do not always use their complete opcode space. Often, opcodes are left
unused or reserved to allow for future expansion of the instruction set.

4

OPERANDS
• Operands specify data locations in memory.

EQUATION DESTINATION SOURCE 1 SOURCE 2

Y = X + Z Y X Z

Y = X + 3 Y X Constant value 3

Y = X + X Y X X

Z = Y + Z Z Y Z

Y = Y + 5 Y Y Constant value 5

Constants are also called literals or immediates.

Basic arithmetic operations work on two values. Add, subtract, multiply, and divide all
require two numbers at a minimum. These two numbers are called operands in computer
architecture.

• The operand locations in memory must be encoded as part of the instruction binary
number.

• In modern RISC instruction set architectures, the register file is the only location allowed
to provide numbers to the ALU. Thus, for arithmetic instructions, the operand encodings
will be numbers that specify what registers provide the numbers to the ALU. Load-store
and branch instructions will have operands that specify memory addresses.

Let’s look at the example equations in this table.

• Algebraically, we can think of the two memory locations using variable names. In the
examples on this slide, variables X, Y, and Z are used.

• Sometimes, algebra includes constants. For example, the equation Y = X+3 in row two of
the table uses the constant value 3.

• Constants are also known as literals, or immediates.

5

THREE-OPERAND ISAs

• Three-operand instruction sets have instructions
that specify all three algebraic variables.

• This is the natural way algebra is written: Z = X+Y

• In this example, Rx represent a register and
semicolon starts an Assembly language comment.

ADD R3, R2, R1 ; R3 = R2 + R1 = X+Y
SUB R9, R4, R1 ; R9 = R4 – R1
EOR R10,R10,R5 ; R10 = R10 XOR R5

N-BIT INSTRUCTION BINARY NUMBER BIT FIELDS

OPCODE BITS DEST SRC1 SRC2

The natural way of writing algebra is using three algebraic variables, and thus three
memory locations or three-operands.

• A good example is three-dimensional space. In some computer graphics problem, the z-
axis location might be calculated based on the x-axis and y-axis values. Perhaps the
equation is z = x + y.

• This example shows the algebra equation converted into a RISC ALU ADD instruction
operating on registers. Based on the comments provided behind the semicolons, the
first register specified in the instruction is the destination of the calculated result, the
second register is source 1 – the one on the left of the arithmetic operation – and the
third register is source 2.

• In the instruction binary number, all three memory locations are specified as bit fields.

The order of the operands in the instruction is also specified in the instruction set
architecture blueprint. This example has opcode dest, src1, src2. Most instruction sets use
this format because it is the natural way of writing equations with the destination of the
result algebraically on the left of the equals sign. But another instruction set might use
opcode src1, src2, dest. You must study the blueprint of every instruction set you learn.

6

TWO-OPERAND ISAs

• Two-operand instruction sets have instructions
that specify two locations. The destination is also
one of the data sources.

ADD R3, R1 ; R3 = R3 + R1
SUB R9, R4 ; R9 = R9 – R4
EOR R10, R5 ; R10 = R10 XOR R5

N-BIT INSTRUCTION BINARY NUMBER BIT FIELDS

OPCODE BITS SRC1 SRC2

Z = X+Y X = X+Ytransforms to

In order to shorten the binary number so that programs take less space in instruction
memory, some instruction sets require the result to overwrite one of the source locations.
This type of instruction set is called a two-operand instruction set.

• While two-operand instruction sets might save space in instruction memory, it is not the
natural way to write algebra equations.

• Embedded systems often have small program memories to help keep consumer cost
low. Thus, instruction set architectures designed for the embedded systems market are
often two-operand so that programs can fit in the available memory space.

• Programmers have to adjust the way they think about their mathematics and data
movement when working in two-operand instruction sets.

7

KEY POINTS

• All instructions calculate values, addresses, or
move data between memory locations.

• Opcodes identify instructions to the CPU circuit.

• Operands specify data locations.

• Three-operand ISAs specify three data locations.

• Two-operand ISAs specify two data locations.

8

