
ARMv4 ISA
Instructions

Dr. Russ Meier
Milwaukee School of Engineering

1

THE BASICS

• ARMv4 is a load-store RISC ISA

• ARMv4 is a 32-bit processor

• 32-bit instruction machine code binary numbers
• 32-bit arithmetic circuit produces 32-bit wide data
• 32-bit memory addresses
• 32-bit wide CPU registers named R0 through R15, CPSR
• 3-operand instruction format: R[Rd]  R[Rn] op R[Rm]
• 8, 12, and 24-bit constants enhance instructions

The ARM ISA was designed by Sophie Wilson at Acorn Computers, Limited – a British
computer company – in 1985. Since then, the ARM ISA has evolved through multiple
revisions. It is currently maintained and developed by ARM Holdings – a company
with global headquarters in Cambridge, England. The version of ARM that we study in
CE1921 is ARMv4 which was described in the mid 1990s.

• ARMv4 is a load-store RISC instruction set architecture. Load-store architectures
do not allow arithmetic instructions to directly operate on memory. Instead,
arithmetic instructions must be preceded by load instructions that move data into
CPU registers. After these load instructions execute, arithmetic instructions can
use the data. The arithmetic result is returned to a register and subsequent store
instructions must be used to move data back down to main memory.

• ARMv4 is a 32-bit processor architecture. This means that the data path moves
32-bit numbers through the arithmetic circuit. RISC architectures generally fix most
numbers to the arithmetic width. ARMV4 is no exception – it has 32-bit fixed-
width instruction binary numbers, 32-bit data, and 32-bit memory addresses.

• ARMv4 describes seventeen CPU registers to hold the 32-bit wide data brought
into the processor from memory as well as the 32-bit wide results calculated by
the circuits. Registers R0 through R12 are general-purpose registers available for

2

use by programmers. Registers R13, R14, R15, and the CPSR have special use in
program sequencing.

• ARMv4 arithmetic instructions are three-operand instruction format with a
destination register and two source locations specified.

• ARMv4 instructions use 8, 12, and 24-bit constants within instruction binary
numbers to immediately provide constant values to the arithmetic circuits. This
speeds computation by avoiding an extra load from data memory.

2

ARMV4
CPU REGISTERS

FUNCTION CALLING

KEEP THESE

OK TO THROW AWAY

USED BY CPU CIRCUIT

COLOR CODE

FUNCTION
 RETURN VALUE R0

R1

R2

R3

R4

R5

R6

R7

R8

R9

R10

R11

R12

R13

R14

R15

FUNCTION
 PARAMETER 0

FUNCTION
 PARAMETER 1

FUNCTION
 PARAMETER 2

FUNCTION
 PARAMETER 3

SAVED VARIABLES

TEMPORARY VARIABLE

STACK POINTER (SP)

LINK REGISTER (LR)

PROGRAM COUNTER (PC)

CPSR
CURRENT PROGRAM

STATUS REGISTER

ARMV4 uses seventeen 32-bit wide registers to control program sequencing and hold
user data.

• Registers R13, R14, R15 and the current program status register (CPSR) are part of
the control circuitry used for program sequencing. These special-purpose registers
are shaded in red because care must be taken to avoid incorrect changes to their
stored values that could result in unexpected program behavior.

• Registers R0 through R12 are general-purpose registers used by the programmer
to hold data.

• The ARMV4 ISA recommends the usage shown by the color bars. This
recommendation is generally followed by compilers converting high-level language
source code into assembly language. This recommendation is known as the
Procedure Call Standard.

• Saved variables are data values that the programmer intends to move
down the memory pyramid for longer-term storage. Procedures – also
called subroutines and functions – should not damage values that the main
program may have stored in saved variable registers. Architects say that
saved variables are preserved across procedure calls.

3

• Temporary variables are data values that are not important to the main
program so any called procedure does not have to preserve the value of
register R12. Architects say that temporary variables are non-preserved
registers.

• Function parameters are values passed from a caller to a function.
• The function return value is the result of the function passed back to the

caller.

3

ARM INSTRUCTION CATEGORIES

Basic
Category

ARMv4
Category

ARMv4 reduces the traditional four basic instruction categories into three.

• ARMv4 renames the arithmetic-logic category as data processing.
• ARMv4 combines conditional branches and unconditional jump instructions into a

single branch category with both types of branches using the same instruction
binary number format. This reduces complexity and introduces regularity to the
instructions that change the program counter; an example of the modern design
rule that regular implies a simple and small design.

4

DATA PROCESSING INSTRUCTIONS

• Register mode:
Rd  Rn op Rm
ADD Rd, Rn, Rm
ADD R0, R1, R2
ADD R0, R1, R2, LSL #5

• Immediate mode:
Rd  Rn op constant
ADD Rd, Rn, imm
ADD R0, R1, #95

• Register-shifted-by-register mode:
Rd  Rn op (Rm shifted-by Rs)
ADD Rd, Rn, Rm, shift-type Rs
ADD R0, R1, R2, LSL R3

General Form: Rd  Rn op Src2

ARM data processing instructions are three-operand instructions specifying a
destination register and two source data operands. The general form of all data
processing instructions is shown. The addressing mode of the instruction describes
what the operand called Src2 is.

• Register mode instructions have a second register as the second operand. This
register can be shifted by some number of bits specified by a shift amount
between zero and 31.

• Immediate mode instructions have a constant value as the second operand.
• Register-shifted-by-register mode instructions have a second register that is

shifted by some amount specified in a fourth register. Shifting can be done to the
left or to the right.

Color-coding has been used to help contextualize the levels of instruction abstraction.

• The most abstract view of the instruction is the register-transfer level equation
shown in blue. This is also known as the arithmetic architectural equation.

• The next abstraction is an instruction description that uses a mnemonic for the
desired operation and operand field names Rd, Rn, Rm, Rs, and immediate –

5

abbreviated as imm. These descriptions are shown in red.
• The least abstract version is the actual instruction. It is shown in green.

The arithmetic circuit diagram shows how the control circuit can use the addressing
modes to control a multiplexer and a shifter in the data path for the second operand.

• Immediate mode instructions will route the constant through the multiplexer.
• Register mode instructions will route the register through the multiplexer.

5

CORE DATA PROCESSING INSTRUCTIONS

INSTRUCTION MODE EXAMPLE REGISTER TRANSFER LEVEL BEHAVIOR (RTL)

ADD Rd, Rn, Rm Register ADD R3, R4, R5 Rd  Rn + Rm

ADD Rd, Rn, imm Immediate ADD R3, R4, #8 R3  Rn + Extended-Immediate

AND Rd, Rn, Rm Register AND R8, R9, R10 R8  Rn bitwise-and Rm

AND Rd, Rn, imm immediate AND R8, R9, #0xBE9 R8  Rn bitwise-and Extended-Immediate

CMP Rn, Rm register CMP R4, R5 Rn – Rm, capture ALU flags

CMP Rn, Imm immediate CMP R8, #0x91 Rn – Extended-Immediate, capture ALU flags

EOR Rd, Rn, Rm register EOR R0, R10, R14 Rd  Rn bitwise-xor Rm

EOR Rd, Rn, imm immediate EOR R0, R10, #0x1A Rd  Rn bitwise-xor Extended-Immediate

MOV Rd, Rn, Rm register MOV R4, R5 Rd  Rm

MOV Rd, Rn, imm immediate MOV R4, #38 Rd  Extended-Immediate

ORR Rd, Rn, Rm register ORR R8, R9, R10 Rd  Rn bitwise-or Rm

ORR Rd, Rn, imm immediate ORR R1, R11, #15 Rd  Rn bitwise-or Extended-Immediate

SUB Rd, Rn, Rm register SUB R3, R4, R5 Rd  Rn – Rm

SUB Rd, Rn, imm immediate SUB R3, R4, #8 Rd  Rn – Rm

This table provides the core set of data processing instructions in register and
immediate addressing modes. This small powerful set can be used to write general-
purpose software.

• Note that this core set is not the complete set of ARM data processing
instructions. The complete set can be found in Appendix B of the course textbook.

• Also note that register mode instructions can be modified to be register-shifted
register mode. To keep the table shorter, register-shifted register mode
instructions are not shown.

6

MEMORY INSTRUCTIONS
LOAD REGISTER MOVES DATA FROM
MEMORY INTO THE REGISTER FILE

• LDR Register mode:
Rd MEM[Rn]
LDR Rd, [Rn]
LDR R0, [R4]

• LDR Register mode:
Rd MEM[Rn + (shifted Rm)]
LDR Rd, [Rn, Rm, shift amount]
LDR R0, [R4, R5]
LDR R0, [R4, R5, LSL #17]

• LDR Immediate mode:
Rd MEM[Rn + imm]
LDR Rd, [Rn, imm]
LDR R0, [R4, #8]

DATA
MEMORY

REGISTER
FILE

R0

R1

.

.

.

R15

DATA

ADDRESS

Memory instructions are load-store instructions that move data between the CPU
and memory. The load-store instructions use register and immediate addressing
modes to form operand 2. The load-store instructions do not support register-shifted-
by register mode.

• The load instruction is called load-register and has the mnemonic LDR.
• LDR calculates a data memory address using the ALU, presents it to memory, and

stores the 32-bit data provided by memory into the destination register.
• The memory address calculation is shown in purple in the register-transfer level

equation. The arrows are also colored in green to help you visualize the direction
of data flow.

7

MEMORY INSTRUCTIONS
STORE REGISTER MOVES DATA FROM THE

REGISTER FILE INTO MEMORY

• STR Register mode:
MEM[Rn]  Rd
STR Rd, [Rn]
STR R0, [R4]

• STR Register mode:
MEM[Rn + (shifted Rm)] Rd
STR Rd, [Rn, Rm, shift amount]
STR R0, [R4, R5]
STR R0, [R4, R5, LSL #17]

• STR Immediate mode:
MEM[Rn + imm]  Rd
STR Rd, [Rn, imm]
STR R0, [R4, #8]

DATA
MEMORY

REGISTER
FILE

R0

R1

.

.

.

R15

DATA

ADDRESS

• The store instruction is called store-register and has the mnemonic STR.
• STR calculates a data memory address using the ALU, presents it to memory, and

routes the 32-bit data from the CPU register files to memory for storage.
• The memory address calculation is shown in purple in the register-transfer level

equation. The arrows are also colored in green to help you visualize the direction
of data flow.

8

CORE LOAD-STORE
INSTRUCTION MODE EXAMPLE REGISTER TRANSFER LEVEL BEHAVIOR (RTL)
LDR Rd, [Rn] register LDR R4, [R5] Rd  MEM[Rn + Extended-Immediate]
LDR Rd, [Rn, imm] immediate LDR R4, [R5, #8] Rd  MEM[Rn + Extended-Immediate]
STR Rd, [Rn] register STR R1, [R6] MEM[Rn + Extended-Immediate]  Rd
STR Rd, [Rn, imm] immediate STR R1, [R6, #0x20] MEM[Rn + Extended-Immediate]  Rd

In the instruction, [] means memory.

The memory address is the value
between the brackets.

This table summarizes the two 32-bit load-store instructions in their basic register
and immediate addressing modes.

• ARM also includes instructions to move 8-bit values. The load-byte and store-byte
instructions are called LDRB and STRB. Data flows in and out of the lower-byte of
the specified CPU register.

• ARM also include instructions to move 16-bit values. The load-half-word and store-
half-word instructions are called LDRH and STRH. Data flows in and out of the
lower two bytes of the specified CPU register.

9

ARMv4 CONDITIONAL EXECUTION
SUFFIX ALU CONDITION CONDITION

EQ A was equal to B Z

NE A was not equal to B 𝑍̅

CS carry out was set to logic 1 C

HS unsigned number A was higher or the same as unsigned B C

CC carry out was cleared to logic 0 𝐶̅

LO unsigned number A was lower than unsigned B 𝐶̅

MI result was negative (minus sign) N

PL result was positive or zero (plus sign) 𝑁ഥ

VS result overflowed and set the overflow bit to logic 1 V

VC no overflow and the overflow bit cleared to logic 0 𝑉ത

ADDEQ R0, R1, #95
CMP R10, R12

Instruction set architectures use the arithmetic condition flags produced by the ALU
to offer conditional execution of instructions.

• Conditional execution means an instruction only executes if the condition is true.
• ALUs announce arithmetic conditions on output bits called flag bits. The four

standard ALU flag bits are carry out (C), signed overflow (V), negative number (N),
and a zero result (Z). When considered as a nibble, CVNZ is called the condition
code nibble, or simply the condition code.

• As seen on the data processing instruction summary slide, the compare (CMP)
instruction captures the CVNZ bits and stores them in the current program status
register (CPSR).

Many RISC ISAs use only a small set of condition suffixes to implement conditional
branch instructions. The ARM ISA takes a very different approach. Almost all ARM
instructions can have conditional suffixes appended to the mnemonic to control
when the circuitry executes the instruction. The example on this slide compares the
two numbers in R10 and R12 and only adds 95 to register R1 if R10 was equal to R12.

10

ARMv4 CONDITIONAL EXECUTION
SUFFIX ALU CONDITION CONDITION

HI unsigned number A was higher than unsigned number B 𝑍̅𝐶

LS Unsigned number A was lower or the same as unsigned B Z OR Cത

GE signed number A was greater than or equal to signed B 𝑁 ⊕ 𝑉

LT signed number A was less than signed number B N ⊕ V

GT signed number A was greater than signed number B Zത(𝑁 ⊕ 𝑉)

LE signed number A was less than or equal to signed B Z OR (N⊕V)

AL always execute the instruction / no condition ignored

ADD R0, R1, R2 = ADDAL R0, R1, R2

The always suffix, AL, is normally omitted
in ARM assembly language programs.

As you can see, ARM offers seventeen conditional mnemonic suffixes. Interestingly,
some of the mathematical conditions use identical condition equations. There are
fifteen unique condition equations. The ARMv4 ISA encodes the required condition
equation – the mnemonic suffix if you will – as a four-bit field in the instruction
binary number.

Instructions that are written without a conditional mnemonic suffix are
unconditionally executed.
• In other words, these instructions always execute.
• ARMv4 does allow the always suffix, AL, to be added to mnemonics for emphasis

but this is an exception to the normal practice of omitting the always suffix.

11

ARMv4 CONDITIONAL BRANCH
MNEMONIC ALU CONDITION CONDITION

BEQ A was equal to B Z

BNE A was not equal to B 𝑍̅

BCS carry out was set to logic 1 C

BHS unsigned number A was higher or the same as unsigned B C

BCC carry out was cleared to logic 0 𝐶̅

BLO unsigned number A was lower than unsigned B 𝐶̅

BMI result was negative (minus sign) N

BPL result was positive or zero (plus sign) 𝑁ഥ

BVS result overflowed and set the overflow bit to logic 1 V

BVC no overflow and the overflow bit cleared to logic 0 𝑉ത

BPL L1

Branch to line L1 if the result was positive or zero

Assembly language programs and high-level language compilers implement for-loops,
do-while loops, while-loops, and if-then-else algorithmic constructs using sequences
of instructions and conditional branches. The green instruction shown on this slide is
read as shown in blue.

12

ARMv4 CONDITIONAL BRANCH

MNEMONIC ALU CONDITION CONDITION

BHI unsigned number A was higher than unsigned number B 𝑍̅𝐶

BLS Unsigned number A was lower or the same as unsigned B Z OR Cത

BGE signed number A was greater than or equal to signed B 𝑁 ⊕ 𝑉

BLT signed number A was less than signed number B N ⊕ V

BGT signed number A was greater than signed number B Zത(𝑁 ⊕ 𝑉)

BLE signed number A was less than or equal to signed B Z OR (N⊕V)

BAL always execute the instruction / no condition ignored

BAL is an unconditional jump
because it always occurs.

Each of the condition mnemonic suffixes can be appended to the branch mnemonic.
There are sixteen conditional branch instructions. The branch-always instruction is
not a conditional instruction because it does not check the ALU condition code. It is
highlighted in maroon on this slide to show the final conditional mnemonic suffix, but
it would be categorized as an unconditional jump.

13

ARMv4 UNCONDITIONAL BRANCH

MNEMONIC TYPE REGISTER TRANSFER LEVEL BEHAVIOR (RTL)

B goto labeled line PC  Branch-Address

BL call subroutine LR  PC+4
PC  Subroutine Address

ARMv4 has two branch mnemonics, called B and BL, that can use the conditional
mnemonic suffixes. When the always suffix, which is usually omitted, is used these
mnemonics provide unconditional branches. The branch instruction, B, implements a
goto that simply changes the program counter. The branch-and-link instruction, BL,
implements a subroutine call by configuring the link register to allow the subroutine
to return to the correct instruction when in finishes.

14

KEY POINTS

• ARMv4 describes a 32-bit load-store RISC processor.

• ARMv4 uses seventeen 32-bit wide CPU registers to control
program sequencing and hold user data.

• ARMv4 calls arithmetic-logic instructions data processing.

• ARMv4 uses register, immediate, and register-shifted register
addressing modes.

• ARMv4 uses conditional execution mnemonic suffixes.

This summary slide notes the key points of this presentation. Continue to review this
video when needed as your study the ARM instructions and use them to write
assembly language programs.

15

