
ARMv4 ISA
Machine Code

Data Processing Formats
Dr. Russ Meier

Milwaukee School of Engineering

1

MACHINE CODE FORMATS

• Every ARMv4 instruction is encoded as a 32-bit machine code binary number.
• Opcodes, operands, and control information bits are encoded as bitfields.
• Each category of instruction has one or more binary number formats.
• Different addressing modes determine which format is used.

The CPU control circuit decodes the machine code
binary number and uses the bit field information

to route data and control calculation.

ARMv4 instructions are encoded as 32-bit binary machine code numbers stored in
instruction memory.

• Each instruction category has a set of machine code binary number formats based
on addressing modes.

• The addressing mode determines how the second ALU operand is found in the
memory pyramid.

• Different addressing modes provide different information to the control circuitry
though machine code bit fields.

• Some bit fields exist in all instruction formats.
• Most bit fields are fixed at constant bit locations within the binary number. One

exception is notable. The multiply instruction formats reorder the location of
register addresses Rd, Rn, and Rm when compared to all other data processing
instruction formats.

• The CE1921 ARMv4 quick reference card and these lecture slides should be
consulted when creating machine code for assembly instructions. This table from
the quick reference card shows all instruction formats studied in CE1921.

• ARMv4 does define a few more instruction format that can be found in the online
ARM reference manual for ARMv4 or in the appendix of the course textbook.

2

The key point to remember is that computer programs are binary numbers stored in
instruction memory. The CPU control circuit decodes the machine code binary
numbers and uses the bit field information to route data and control the calculation.

2

BASIC BITFIELDS
IN EVERY INSTRUCTION

CATEGORY OPCODE

Data Processing 00

Load-Store 01

Branch 10

Reserved 11

CONDITIONAL SUFFIX COND

EQ 0000

NE 0001

CS/HS 0010

CC/LO 0011

MI 0100

PL 0101

VS 0110

VC 0111

HI 1000

LS 1001

GE 1010

LT 1011

GT 1100

LE 1101

AL 1110

unused 1111

ADDEQ
SUBLT
BNE

ADD
SUB

B

All machine code formats include conditional execution and opcode information.

• The conditional execution suffix is encoded in the most significant nibble of
every machine code binary number. The conditional execution suffix commands
the control circuit to only execute the instruction if the condition code nibble from
the ALU, composed of the C, V, N, and Z flags, matches the specified condition in
the suffix. Examples of conditional execution suffixes are shown in green
instructions on this slide. The final three instructions use the always suffix, AL – a
suffix that is traditionally omitted from the assembly language mnemonic.

• The opcode is a 2-bit field at bit positions 27 and 26 in the machine code binary
number that identifies the category of the instruction to the control circuit. Data
processing instructions use opcode 0, while load-store instructions use opcode 1
and branch instructions use opcode 2.

3

DATA PROCESSING
INSTRUCTIONS

• Use a 4-bit command field

• Register addressing mode

• Register-shifted register
addressing mode

• Immediate addressing mode

INSTRUCTION CMD

AND 0000

EOR 0001

SUB 0010

RSB 0011

ADD 0100

ADC 0101

SBC 0110

RSC 0111

TST 1000

TEQ 1001

CMP 1010

CMN 1011

ORR 1100

MOV 1101

BIC 1110

MVN 1111

Rd  Rn op Rm

Rd  Rn op imm

Rd  Rn op (Rm shifted Rs bits)

Rd  Rn op (Rm shifted imm bits)

ADD{S}{COND} R0, R11, R9

This presentation focuses on the data processing machine code formats.

• Data processing instructions complete arithmetic or logic operations.
• All data processing instructions use a command field to inform the control circuit

of the requested operation.
• Multiply uses a three-bit command field documented later in this presentation.
• All other data processing instructions use a command nibble located at bit

positions 24 down to 21 in the machine code binary number.
• The addressing mode is identified to the control circuit using the immediate

control bit located in bit position 25 within the machine code binary number.
Immediate addressing mode is encoded with the I-BIT set to logic-1. Register
addressing modes clear the I-BIT to logic-0.

• Data processing instructions can command the control circuit to sample the
condition code nibble and store it in the current program status register (CPSR) by
setting the S-BIT to logic-1. The compare and test instructions (CMP, CMN, TST, and
TEQ) always encode S=1. All other instructions encode S=0 unless the S suffix is
added to the assembly language mnemonic.

• As the green example instruction shows, the ARMv4 ISA specifies that the optional
conditional execution suffix should be the last suffix appended to the instruction

4

mnemonic.

4

DATA PROCESSING INSTRUCTIONS

Instruction Binary Number Encoding

Register Addressing Mode Rd  Rn + Rm

ADD R0, R1, R3

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

COND OP I CMD S Rn

1 1 1 0 0 0 0 0 1 0 0 0 0 0 0 1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Rd SHIFT AMOUNT SHIFT
TYPE

0 Rm

0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1

0xE0810003

R0  R1 + R3

Let’s start a series of machine code examples with the instruction ADD R0, R1, R3.
Hand assembly of instructions into machine code binary numbers follows a set
process:

• Identify the addressing mode of data processing instructions by looking at the
second ALU operand. In this case, the second operand is R3 – a register. This is
register addressing mode.

• Write the register transfer level (RTL) equations in abstract and register-name
forms.

• Draw the correct machine code format as a table of bits and bit field names.
• Encode the addressing mode. Register mode is not immediate mode and thus I=0.
• Encode suffix information. In this case, there is no S suffix and the conditional

execution suffix is the omitted always suffix. This results in S=0 and COND=
always=1110.

• Encode the command field. From the table of commands, CMD=4=0100.
• Encode the operands. Rn=1=0001, Rd=0=0000, Rm=3=0011.
• Encode the shift information. There is no shift information and all shift information

bits default to 0.
• Write the final machine code binary number in hexadecimal.

5

DATA PROCESSING INSTRUCTIONS

Instruction Binary Number Encoding

Register Addressing Mode Rd  Rn AND Rm

AND R9, R11, R6

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

COND OP I CMD S Rn

1 1 1 0 0 0 0 0 0 0 0 0 1 0 1 1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Rd SHIFT AMOUNT SHIFT
TYPE

0 Rm

1 0 0 1 0 0 0 0 0 0 0 0 0 1 1 0

0xE00B9006

R9  R11 AND R6

Encode the instruction AND R9, R11, R6 into its machine code binary number.

• Identify the addressing mode of data processing instructions by looking at the
second ALU operand. In this case, the second operand is R6 – a register. This is
register addressing mode.

• Write the register transfer level (RTL) equations in abstract and register-name
forms.

• Draw the correct machine code format as a table of bits and bit field names.
• Encode the addressing mode. Register mode is not immediate mode and thus I=0.
• Encode suffix information. In this case, there is no S suffix and the conditional

execution suffix is the omitted always suffix. This results in S=0 and COND=
always=1110.

• Encode the command field. From the table of commands, CMD=0=0000.
• Encode the operands. Rn=11=1101, Rd=9=1001, Rm=6=0110.
• Encode the shift information. There is no shift information and all shift information

bits default to 0.
• Write the final machine code binary number in hexadecimal.

6

DATA PROCESSING INSTRUCTIONS

Instruction Binary Number Encoding

Register Addressing Mode CVNZ  Rn CMP Rm

CMP R1, R12

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

COND OP I CMD S Rn

1 1 1 0 0 0 0 1 0 1 0 1 0 0 0 1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Rd SHIFT AMOUNT SHIFT
TYPE

0 Rm

0 0 0 0 0 0 0 0 0 0 0 0 1 1 0 0

0xE151000C

CVNZ  R1 CMP R12

Encode the instruction CMP R1, R12 into its machine code binary number.

• Identify the addressing mode of data processing instructions by looking at the
second ALU operand. In this case, the second operand is R12 – a register. This is
register addressing mode.

• Write the register transfer level (RTL) equations in abstract and register-name
forms. The compare instruction subtracts R1 – R12 and updates the condition code
nibble. Rather than write subtraction in the RTL equation, use CMP to remind
yourself that the subtraction result is not being stored but the condition code
nibble is.

• Draw the correct machine code format as a table of bits and bit field names.
• Encode the addressing mode. Register mode is not immediate mode and thus I=0.
• Encode suffix information. In this case, there is no S suffix but compare and test

instructions always set the condition code nibble. This results in S=1. The
conditional execution suffix is the omitted always suffix resulting in COND=
always=1110.

• Encode the command field. From the table of commands, CMD=10=1010.
• Encode the operands. Rn=1=0001, Rd=unused=defaulted to 0000, Rm=12=1100.
• Encode the shift information. There is no shift information and all shift information

7

bits default to 0.
• Write the final machine code binary number in hexadecimal.

7

DATA PROCESSING INSTRUCTIONS

Instruction Binary
Number Encoding

Register Addressing Mode Rd  Rn + (Rm >> constant)

ADD R4, R4, R5, LSR #2

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

COND OP I CMD S Rn

1 1 1 0 0 0 0 0 1 0 0 0 0 1 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Rd SHIFT AMOUNT SHIFT
TYPE

0 Rm

0 1 0 0 0 0 0 1 0 0 1 0 0 1 0 1

0xE0844125

R4  R4 + (R5 >> 2)

Encode the instruction ADD R4, R4, R5, LSR #2 into its machine code binary number.

• Identify the addressing mode of data processing instructions by looking at the
second ALU operand. In this case, the second operand is R5 – a register – shifted
right 2 positions. This is register addressing mode because the shifted value is
stated as a constant and not stated as a value held in another register.

• Write the register transfer level (RTL) equations in abstract and register-name
forms.

• Draw the correct machine code format as a table of bits and bit field names.
• Encode the addressing mode. Register mode is not immediate mode and thus I=0.
• Encode suffix information. In this case, there is no S suffix and the conditional

execution suffix is the omitted always suffix. This results in S=0 and COND=
always=1110.

• Encode the command field. From the table of commands, CMD=4=0100.
• Encode the operands. Rn=4=0100, Rd=4=0100, Rm=5=0101.
• Encode the shift information. SHIFT AMOUNT=2=00010 and SHIFT TYPE=LSR=01.
• Write the final machine code binary number in hexadecimal.

8

DATA PROCESSING INSTRUCTIONS

Instruction Binary
Number Encoding

Register-shifted Register Addressing Mode

Rd  Rn – (Rm shifted Rs)SUBS R6, R11, R12, LSL R2

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

COND OP I CMD S Rn

1 1 1 0 0 0 0 0 0 1 0 1 1 0 1 1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Rd Rs 0 SHIFT
TYPE

1 Rm

0 1 1 0 0 0 1 0 0 0 0 1 1 1 0 0

0xE05B621C

CVNZ, R6  R11 – (R12 << R2)

Encode the instruction SUBS R6, R11, R12, LSR R2 into its machine code binary
number.

• Identify the addressing mode of data processing instructions by looking at the
second ALU operand. In this case, the second operand is R12 – a register – shifted
left the number of times specified in the lower byte of R2. This is register-shifted
register addressing mode because the shifted value is stored in a fourth register.

• Write the register transfer level (RTL) equations in abstract and register-name
forms. Because the S suffix is present, this instruction will set the condition code
nibble and store the calculated result in register R6.

• Draw the correct machine code format as a table of bits and bit field names.
• Encode the addressing mode. Register mode is not immediate mode and thus I=0.
• Encode suffix information. In this case, there is an S suffix and the conditional

execution suffix is the omitted always suffix. This results in S=1 and COND=
always=1110.

• Encode the command field. From the table of commands, CMD=2=0010.
• Encode the operands. Rn=11=1011, Rd=6=0110, Rm=12=1100, and the shift value

register Rs=2=0010.
• Encode the shift information. SHIFT TYPE=LSL=00.

9

• Write the final machine code binary number in hexadecimal.

9

DATA PROCESSING INSTRUCTIONS

Instruction Binary Number Encoding

Immediate Addressing Mode Rd  Rn AND immediate
AND R7, R3, #9

0xE2037009

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

COND OP I CMD S Rn

1 1 1 0 0 0 1 0 0 0 0 0 0 0 1 1

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Rd ROTATION IMMEDIATE

0 1 1 1 0 0 0 0 0 0 0 0 1 0 0 1

R7  R3 AND 9

Encode the instruction AND R7, R3, #9 into its machine code binary number.

• Identify the addressing mode of data processing instructions by looking at the
second ALU operand. In this case, the second operand is a constant. This is
immediate addressing mode.

• Write the register transfer level (RTL) equations in abstract and register-name
forms.

• Draw the correct machine code format as a table of bits and bit field names.
• Encode the addressing mode: I=1.
• Encode suffix information. In this case, there is no S suffix and the conditional

execution suffix is the omitted always suffix. This results in S=0 and COND=
always=1110.

• Encode the command field. From the table of commands, CMD=0=0100.
• Encode the register operands. Rn=3=0011, Rd=7=0111.
• Encode the immediate constant and rotation fields. Since the constant fits on the

8-bit number line, simply encode ROTATE=0 and IMMEDIATE=9=00001001.
• Write the final machine code binary number in hexadecimal.

10

DATA PROCESSING INSTRUCTIONS

Instruction Binary Number Encoding

Immediate Addressing Mode Rd  Rn XOR immediate

EOR R2, R6, #93

0xE226205D

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

COND OP I CMD S Rn

1 1 1 0 0 0 1 0 0 0 1 0 0 1 1 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Rd ROTATION IMMEDIATE

0 0 1 0 0 0 0 0 0 1 0 1 1 1 0 1

R2  R6 XOR 93

Encode the instruction EOR R2, R6, #93 into its machine code binary number.

• Identify the addressing mode of data processing instructions by looking at the
second ALU operand. In this case, the second operand is a constant. This is
immediate addressing mode.

• Write the register transfer level (RTL) equations in abstract and register-name
forms.

• Draw the correct machine code format as a table of bits and bit field names.
• Encode the addressing mode: I=1.
• Encode suffix information. In this case, there is no S suffix and the conditional

execution suffix is the omitted always suffix. This results in S=0 and COND=
always=1110.

• Encode the command field. From the table of commands, CMD=1=0001.
• Encode the register operands. Rn=6=0110, Rd=2=0010.
• Encode the immediate constant and rotation fields. Since the constant fits on the

8-bit number line, simply encode ROTATE=0 and IMMEDIATE=93=01011101.
• Write the final machine code binary number in hexadecimal.

11

LARGE CONSTANTS

• ARM contains a barrel
shifter component to shift
and rotate the number that
becomes ALU SRC2.

• Registers and immediate
constants can be shifted
and rotated.

• Larger data processing
instruction constants can
be created created on-the-
fly by rotation.

ROTATOR

ALU

 REGISTER
 FILE

SRC1
MUX

SRC2

Immediate
Constant

A B

F

R0

R1

.

.

.

R15

A1
A2
A3

EXTENDER

RD1 RD2

WD3

CLK
RST

REGWR

CVNZ

CPSR

ARMv4 includes a shift and rotate component called a barrel shifter in the operand
circuitry for SRC2. In this diagram, the barrel shifter is labeled as a rotator because it
is the rotation functionality that allows constants much larger than 8-bits to be
specified in the small rotation and immediate bit fields defined in the data processing
machine code format.

• Remember that the whole point of having an “immediate constant” in the
machine code binary number is speed – avoiding an additional data memory load.

• Many 32-bit RISC architectures developed at the same time as the ARMv4 ISA use
16-bit immediate bit fields. ARMv4 doesn’t have space for a 16-bit immediate bit
field because it allows conditional execution for most instructions. This requires a
conditional execution suffix. When this suffix, the opcode, the command bits,
control bits I and S, and the register operands Rd and Rn are encoded, there are
only 12-bits remaining for an immediate – leaving a smaller immediate number
line than the competitors.

• ARMv4 may have been at a disadvantage commercially if it couldn’t form larger
constants directly from information encoded in the machine code number.

• The architecture mitigates this disadvantage by using one nibble of the 12-bits to
specify a rotation amount used to rotate an 8-bit immediate into position

12

somewhere else within 32-bits. This provides a much more diverse set of allowed
constants than the 0 to 4095 number line specified by a fixed 12-bit immediate
field.

12

LARGE CONSTANTS

The rotation nibble in the data processing machine code format specifies how many
rotate-right steps should be completed. Each rotate-right moves the immediate byte
two positions. This provides a rich set of possible constants but not a complete 32-bit
number line. In this diagram, white squares are filled with zeros and shaded squares
represent the bits of the machine code immediate byte. The darker shading shows
that the machine code immediate byte can be aligned into any byte of the 32-bit
number that arrives at the ALU. A quick inspection will also show that it can be
aligned to any nibble within the 32-bit number that arrives at the ALU.

13

START

CONSTANT
< 256?

ROTATION = 0

IMMEDIATE =
CONSTANT VALUE

Yes

CAN ROTATE
TO POSITION?

ROTATION =
of 2-bit ROR ops

IMMEDIATE =
BIT PATTERN TO

ROR

Yes

ASSEMBLER
REPORTS ERROR

END

LARGE CONSTANTS

Assembler Algorithm

A human completing hand assembly, or a software assembler must determine if the
desired large immediate value can be formed from an 8-bit immediate rotated into
position. This flowchart outlines a basic algorithm. There are three outcomes: a
constant that naturally fits on the 8-bit number line, a rotated immediate that creates
the desired constant, and an assembler error if the constant cannot be formed. Pause
this presentation and study the algorithm a bit.

14

LARGE CONSTANTS

• Start with 32-bit immediate 4080: 0000 0000 0000 0000 0000 1111 1111 0000

• Can an 8-bit window be found that surrounds all the energy bits and results in an
immediate rotated into one of the 2-bit rotate-right positions within the 32-bit number?

MOV R0,#4080

IMMEDIATE = 0xFF
ROTATE = 0xE

Determine the immediate and rotation bit fields required to create large constant
4080.

• Write the 32-bit binary equivalent of 4080.
• Compare the window against positions within the rotation table.
• This is immediate bitfield 0xFF and rotate bitfield 0xE.

15

LARGE CONSTANTS

• Start with 32-bit immediate 612: 0000 0000 0000 0000 0000 0010 0110 0100

• Can an 8-bit window be found that surrounds all the energy bits and results in an
immediate rotated into one of the 2-bit rotate-right positions within the 32-bit number?

MOV R0,#612

IMMEDIATE = 0x99
ROTATE = 0xF

Determine the immediate and rotation bit fields required to create large constant
612.

• Write the 32-bit binary equivalent of 612.
• Compare the window against the positions within the rotation table.
• This is immediate bitfield 0x99 and rotate bitfield 0xF.

16

LARGE CONSTANTS

• Start with 32-bit immediate 919: 0000 0000 0000 0000 0000 0011 1001 0111

• Can an 8-bit window be found that surrounds all the energy bits and results in an
immediate rotated into one of the 2-bit rotate-right positions within the 32-bit number?

MOV R0,#919

Assembler error: a 10-bit window required

Determine the immediate and rotation bit fields required to create large constant
612.

• Write the 32-bit binary equivalent of 612.
• Compare the window against the positions within the rotation table.
• The required window to enclose all energy bits is 10-bits wide. This cannot fit in

the 8-bit immediate field.
• This constant cannot be inserted in the machine code binary number.
• The assembler reports an error and the programmer must instead use a load from

data memory.

17

LARGE CONSTANTS

• Start with 32-bit immediate 19240: 0000 0000 0000 0000 0100 1011 0010 1000

• Can an 8-bit window be found that surrounds all the energy bits and results in an
immediate rotated into one of the 2-bit rotate-right positions within the 32-bit number?

MOV R0,#19240

Assembler error: a 12-bit window required

Determine the immediate and rotation bit fields required to create large constant
612.

• Write the 32-bit binary equivalent of 612.
• Compare the window against the positions within the rotation table.
• The required window to enclose all energy bits is 12-bits wide. This cannot fit in

the 8-bit immediate field.
• This constant cannot be inserted in the machine code binary number.
• The assembler reports an error and the programmer must instead use a load from

data memory.

18

• Start with 32-bit immediate 840: 0000 0000 0000 0000 0000 0011 0100 1000

• Can an 8-bit window be found that surrounds all the energy bits and results in an
immediate rotated into one of the 2-bit rotate-right positions within the 32-bit number?

MOV R0,#840

LARGE CONSTANTS

Determine the immediate and rotation bit fields required to create large constant
612.

• Write the 32-bit binary equivalent of 840.
• Compare the window against the positions within the rotation table.
• This is immediate bitfield 0xD2 and rotate bitfield 0xF.

19

DATA PROCESSING INSTRUCTIONS

Instruction Binary Number Encoding

Immediate Addressing Mode Rd  immediate

MOV R0,#840

0xE3A00FD2

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

COND OP I CMD S Rn

1 1 1 0 0 0 1 1 1 0 1 0 0 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Rd ROTATION IMMEDIATE

0 0 0 0 1 1 1 1 1 1 0 1 0 0 1 0

R0  840

Encode the instruction MOV R0, #840 into its machine code binary number.

• Identify the addressing mode of data processing instructions by looking at the
second ALU operand. In this case, the second operand is a constant. This is
immediate addressing mode.

• Write the register transfer level (RTL) equations in abstract and register-name
forms.

• Draw the correct machine code format as a table of bits and bit field names.
• Encode the addressing mode: I=1.
• Encode suffix information. In this case, there is no S suffix and the conditional

execution suffix is the omitted always suffix. This results in S=0 and COND=
always=1110.

• Encode the command field. From the table of commands, CMD=13=1101.
• Encode the register operands. Rn=unused=defaults to 0000, Rd=0=0000.
• Encode the immediate constant and rotation fields. ROTATE=0 and

IMMEDIATE=0xD2=11010010.
• Write the final machine code binary number in hexadecimal.

20

MACHINE CODE FORMATS

• Every ARMv4 instruction is encoded as a 32-bit binary number.
• Opcodes, operands, and control information bits are encoded as bitfields.
• Each category of instruction has one or more binary number formats.
• Different addressing modes determine which format is used.

Let’s Look at Multiply

ARMv4 does not provide divide instructions because divide is the most expensive
arithmetic operation in terms of circuit silicon space and speed of calculation. It does
provide a set of data processing instructions for multiplication. These instructions do
not use the machine code formats of the other data processing instructions. Instead,
a special format just for multiplication instructions is used. It is not clear why this
format rearranged the location of the register operands, but as you can see all
register operands have moved to new positions in this format. Let’s look at multiply
and practice encoding some example instructions.

21

MULTIPLY
• Multiplying n-bit numbers yields a 2n-bit wide result.

• An ARMv4 32-bit multiply gives a 64-bit result.

15 x 15 = 225

1111ଶ x 1111ଶ = 1110_0001ଶ

22

MULTIPLY
• ARMv4 has a word-size multiply instruction:

0x003F928 x 00000035 =0x0000_0000_00D2_9548

Rd  lower 32-bits of Rn x Rm

Rd  00D2_9548

MUL Rd, Rn, Rm

The size of most arithmetic operations on ARM is 32-bits. This is the word size of the
processor. ARMv4 defines the word size instruction shown in green. The blue register
transfer level notation and the example provided illustrate capturing the least
significant word of the 64-bit result for placement in Rd.

Instructions that store all 64-bits of the result. This
set of instructions are long-word size instructions.

23

MULTIPLY-AND-ACCUMULATE
• ARMv4 has a word-size multiply-and-accumulate:

(0x003F928 x 00000035) + 0x00000008 =0x0000_0000_00D2_9550

Rd  lower 32-bits of (Rn x Rm) + Ra

Rd  00D2_9550

MLA Rd, Rn, Rm, Ra

MLA is the line equation: y = mx+b
• Useful in computer graphics and digital signal processing.
• Useful in a software division algorithm so

that silicon space is not wasted for division circuit.

The size of most arithmetic operations on ARM is 32-bits. This is the word size of the
processor. ARMv4 defines the word size instruction shown in green. The blue register
transfer level notation and the example provided illustrate capturing the least
significant word of the 64-bit result for placement in Rd. This is an incredibly powerful
instruction that has useful application in computer graphics, division, and digital
signal processing applications.

Instructions that store all 64-bits of the result. This
set of instructions are long-word size instructions.

24

OTHER MULTIPLY INSTRUCTIONS
• Focus in CE1921 is on word-size multiply: MUL, MLA

• ARMv4 does define longword-size multiplies that
store all 64-bits of the multiplication in two separate
registers.

• Interested students should consult appendix B of
the textbook to see those 64-bit instructions.

25

DATA PROCESSING INSTRUCTIONS

Instruction Binary Number Encoding

Register Addressing Mode Rd  Rn x Rm
MUL R8, R6, R2

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

COND OP 0 0 CMD S Rd

1 1 1 0 0 0 0 0 0 0 0 0 1 0 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Ra Rm 1 0 0 1 Rn

0 0 0 0 0 0 1 0 1 0 0 1 0 1 1 0

0xE0080296

R8  R6 x R2 (lower 32-bits)

Encode the instruction MUL R8, R6, R2 into its machine code binary number.

• Identify the addressing mode of data processing instructions by looking at the
second ALU operand. In this case, the second operand is R2 – a register. This is
register addressing mode.

• Write the register transfer level (RTL) equations in abstract and register-name
forms.

• Draw the correct machine code format as a table of bits and bit field names.
• Encode suffix information. In this case, there is no S suffix and the conditional

execution suffix is the omitted always suffix. This results in S=0 and COND=
always=1110.

• Encode the command field. For MUL, CMD=0=000.
• Encode the operands. Rd=8=1000, Ra=unused=0000, Rm=2=0010, Rn=6=0110.
• Write the final machine code binary number in hexadecimal.

26

DATA PROCESSING INSTRUCTIONS

Instruction Binary Number Encoding

Register Addressing Mode Rd  (Rn x Rm) + Ra
MLA R12, R3, R2, R7

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16

COND OP 0 0 CMD S Rd

1 1 1 0 0 0 0 0 0 0 1 0 1 1 0 0

15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Ra Rm 1 0 0 1 Rn

0 1 1 1 0 0 1 0 1 0 0 1 0 0 1 1

0xE02C7293

R12  R3 x R2 + R7

Encode the instruction MLA R12, R3, R2, R7 into its machine code binary number.

• Identify the addressing mode of data processing instructions by looking at the
second ALU operand. In this case, the second operand is R2 – a register. This is
register addressing mode.

• Write the register transfer level (RTL) equations in abstract and register-name
forms.

• Draw the correct machine code format as a table of bits and bit field names.
• Encode suffix information. In this case, there is no S suffix and the conditional

execution suffix is the omitted always suffix. This results in S=0 and COND=
always=1110.

• Encode the command field. For MLA, CMD=1=001.
• Encode the operands. Rd=12=1100, Ra=7=0111, Rm=2=0010, Rn=3=0011.
• Write the final machine code binary number in hexadecimal.

27

KEY POINTS

• ARMv4 uses 32-bit machine code binary numbers.

• The control circuit uses machine code bitfields to route data and
control calculation.

• Addressing mode sets the machine code format and bitfields.

• The fixed-width of the machine code binary number limits the size
of the immediate constant.

• ARMv4 expanded the amount of constant numbers using a rotator

• ARMv4 does not include divide instructions.

• ARMv4 has 32-bit word-size and 64-bit long-word size multiply.

This summary slide notes the key points of this presentation. Continue to review this
video when needed as your study the ARM instructions and use them to write
assembly language programs.

28

