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MEMORY PYRAMID

Primary Memory

Secondary Memory

• Primary memory is the working electronic memory used by a running program. It 
is volatile – meaning that it loses its values when the power is turned off. 

• Secondary memory is long term storage to hold data and programs for later use. It 
is non-volatile – meaning that it retains its values when the power is turned off. 

• Speed is fastest at the top of the pyramid. These memories are also the most 
expensive per bit.  Speed and cost both decrease as you go down the pyramid. 

• Size is largest at the bottom of the pyramid. These technologies are also the 
cheapest per bit. Size decreases as you go up the pyramid. 
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MEMORY PYRAMID
LEVEL NAME TYPE PRICE (2019)

L0 CPU REGISTERS REGISTER On-chip
Microprocessor 

Memories
L1 CPU I-CACHE, CPU D-CACHE STATIC RAM

L2 LEVEL 2 SHARED CACHE STATIC RAM

L3 LEVEL 3 SHARED CACHE STATIC RAM

L4 MAIN MEMORY (RAM) DYNAMIC RAM $5/GB

L5 ELECTRONIC DISK (SSD) NAND FLASH ROM $0.13/GB

L6 MAGNETIC HARD DRIVE (HDD) MAGNETIC PLATTER $0.05/GB

L7 MAGNETIC TAPE DRIVE MAGNETIC TAPE $0.006/GB

Pricing pulled from multiple electronic warehouses and 
averaged on May 15, 2019
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IC MEMORY COMPARISON
• Static RAM

• fast:  10-50 ns delay
• space per bit: 6 transistors per bit 
• expensive:  $300-$500 per GB (2019 price: digikey.com)
• use today:  cache memory
• refresh:  not required : static storage
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IC MEMORY COMPARISON

• Dynamic RAM

• slower:  20-50 ns delay
• space per bit:    1 transistor per bit 
• cheap:  $10-15 per GB 
• use today:  main memory
• refresh: required : dynamic storage
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LOCALITY PRINCIPLES
• Memory pyramid exploits locality principles for speed.

• Temporal locality:
• items tends to be re-referenced again soon
• examples:  for and while loops, tight branches

• Spatial locality:
• Items with close memory addresses tend to be used 

together
• examples:  sequential program instructions, arrays

“Bring stuff being used together now closer to the processor”

The locality principles led to the design of the memory pyramid. Smaller, faster, more 
expensive memories could be used close to the microprocessor to ensure the fastest 
access when the CPU needs the data. The goal would be to bring stuff being used 
together now closer to the processor. 
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CACHE MEMORY

• Cache:  a small hiding place

• Cache memory:  
• smaller memory than main memory
• between the microprocessor and main memory
• first used commercially in the 1960s
• modern microprocessors are Harvard organized with 

separate instruction and data caches
• some microcontrollers also have cache memory

• The register file is part of the central processing unit. It can be manipulated 
directly by assembly language programmers, but is usually not directly 
manipulated by high-level language programmers. 

• Most programmers write in high-level languages. To these programmers the “main 
memory” is what they think of as their working storage. 

• The locality principles suggested that a hidden smaller memory be placed between 
the larger main memory and the CPU registers. This hidden cache of data could be 
accessed more quickly by the CPU than main memory because it was smaller and 
faster.  

• Caches are faster because they are fabricated today on the same silicon die as the 
central processing unit – avoiding the pin delay. They are faster because they are 
built from static-RAM rather than the forgetful DRAM that must be refreshed. They 
are faster because they operate at the speed of the CPU clock, while main memory 
usually operates at the speed of the memory bus protocol. These are some of the 
examples of why cache is faster.  The Computer Architecture 3 elective examines 
memory systems in detail. 

• Separate instruction and data caches support pipelines in modern central 
processing units. 
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CACHE MEMORY

• Cache memory is also 
hierarchically split

• Traditional split
• Level 1:  microprocessor 

instruction and data
• Level 2:  separate silicon 

packaged in same chip
• Level 3:  motherboard

• Today
• microprocessors generally 

have L1, L2, and L3 on-chip

Intel Core I5-750
This image is widely distributed on the Internet without attribution.

Every effort was made to find the original image so that 
copyright attribution could be added. 

For academic use only. 
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CACHE MEMORY 

• Memory address 
blocks map to cache 
blocks

• Multiple memory 
blocks will map to the 
same cache location

• Modulo-n arithmetic 
hash function

• In its most basic form, a cache memory implements a hash table. 
• Memory addresses are hashed into the smaller memory using a module-n 

arithmetic hash function. 
• Remember that in computer architecture, a memory address represents a 

particular byte in memory. 
• In this example, addresses are shown by their byte number. 
• The example shows that byte B3 and byte B19 both map to location B3 in the 

smaller cache memory. This bin, bin B3, is the has location for both bytes. 
• The hash location, also called the cache address, can be calculated as the 

remainder of taking the byte number and dividing by the size of the cache. 
• The remainder is the modulo result. 
• 3 / 16 = 0 remainder 3. Thus, byte B3 hashes into cache bin B3. 
• 19 mod 16 = 3.  Thus, byte B19 also hashes into cache bin B3. 
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DIRECT MAPPED CACHES

• simplest cache organization

• each memory address maps to exactly one cache 

• classic mapping equation
• Memory address bits form a binary address = b
• Number of blocks in cache = cache size = n

• cache address = b mod n
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CACHE TERMINOLOGY

• block
• smallest data size transferred between levels

• blocksize
• size of the block in bytes

• memory hit
• address access finds data in memory

• memory miss
• address access does not find data in memory
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CACHE TERMINOLOGY

• hit rate
• fraction of times a memory hit occurs

• miss rate
• fraction of times a memory miss occurs
• Miss rate = 1 – hit rate 
• m = 1 – h

• hit time
• examine address, determine validity, retrieve
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CACHE TERMINOLOGY

• miss penalty
• examine address, determine invalid, replace item by 

reading from lower level, retrieve
• significantly longer delay than hit time

• coherency
• process of maintaining consistent data across 

memory levels as misses occur
• coherency replacement strategies are important
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DIRECT MAPPED CACHE
CACHE BIN 
ADDRESS

WRITTEN
(DIRTY BIT)

VALID TAG DATA

000 N N

001 N N

010 N N

011 N N

100 N N

101 N N

110 N N

111 N N

This shows an initialized cache.
No data values are valid yet because no LDR has executed.
No data values are dirty yet because no STR has executed.

The next few slides will illustrate a cache memory filling bin locations with data. Loads 
and stores will change valid and dirty bits. Tags will be inserted. Fake data will be used 
to represent “something that came from the lower levels of memory.” 
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DIRECT MAPPED CACHE
READ LOCATION 0xFBCA

CACHE 
ADDRESS

WRITTEN
(DIRTY BIT)

VALID TAG DATA

000 N N

001 N N

010 N Y 1111 1011 1100 1 0x49 

011 N N

100 N N

101 N N

110 N N

111 N N

Miss causes read into cache location 2, tag updated, valid bit changed to yes

The LDR for this read presents address FBCA. It hashes to bin 2.
The cache does not find it. The location is not dirty. 

The cache initiates a read from the lower level.  
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DIRECT MAPPED CACHE
READ LOCATION 0x96AF

CACHE 
ADDRESS

WRITTEN
(DIRTY BIT)

VALID TAG DATA

000 N N

001 N N

010 N Y 1111 1011 1100 1 0x49

011 N N

100 N N

101 N N

110 N N

111 N Y 1001 0110 1010 1 0xAB

Miss causes read into cache location 7, tag updated, valid bit changed to yes

The LDR for this read presents address 96AF. It hashes to bin 7.
The cache does not find it. The location is not dirty. 

The cache initiates a read from the lower level.  
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DIRECT MAPPED CACHE
READ LOCATION 0x0003

CACHE 
ADDRESS

WRITTEN
(DIRTY BIT)

VALID TAG DATA

000 N N

001 N N

010 N Y 1111 1011 1100 1 0x49

011 N Y 0000 0000 0000 0 0xFF

100 N N

101 N N

110 N N

111 N Y 1001 0110 1010 1 0xAB

Miss causes read into cache location 3, tag updated, valid bit changed to yes

The LDR for this read presents address 0003. It hashes to bin 3.
The cache does not find it. The location is not dirty. 

The cache initiates a read from the lower level.  
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DIRECT MAPPED CACHE
READ LOCATION 0x6826

CACHE 
ADDRESS

WRITTEN
(DIRTY BIT)

VALID TAG DATA

000 N N

001 N N

010 N Y 1111 1011 1100 1 0x49

011 N Y 0000 0000 0000 0 0xFF

100 N N

101 N N

110 N Y 0110 1000 0010 0 0xCC

111 N Y 1001 0110 1010 1 0xAB

Miss causes read into cache location 6, tag updated, valid bit changed to yes

The LDR for this read presents address 6826. It hashes to bin 6.
The cache does not find it. The location is not dirty. 

The cache initiates a read from the lower level.  
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DIRECT MAPPED CACHE
READ LOCATION 0x992E

CACHE 
ADDRESS

WRITTEN 
(DIRTY BIT)

VALID TAG DATA

000 N N

001 N N

010 N Y 1111 1011 1100 1 0x49

011 N Y 0000 0000 0000 0 0xFF

100 N N

101 N N

110 N Y 1001 1001 0010 1 0x00

111 N Y 1001 0110 1010 1 0xAB

Miss causes conflict, not dirty, read overwrites location 6, tag updated, valid bit stays yes

The LDR for this read presents address 992E. It hashes to bin 6.
The cache does not find it. The location is not dirty. 

The cache initiates a read from the lower level and overwrites.  

19



DIRECT MAPPED CACHE
WRITE LOCATION 0x992E WITH 0x8E

CACHE 
ADDRESS

WRITTEN 
(DIRTY BIT)

VALID TAG DATA

000 N N

001 N N

010 N Y 1111 1011 1100 1 0x49

011 N Y 0000 0000 0000 0 0xFF

100 N N

101 N N

110 Y Y 1001 1001 0010 1 0x8E

111 N Y 1001 0110 1010 1 0xAB

Hit, mark dirty, write overwrites location 6, valid bit stays yes, 

The STR for this read presents address 992E. It hashes to bin 6.
The cache finds the address tag. The data location is written. 

The dirty bit is set because of the STR of new data.  

Remember that the data lives in main memory during execution of a program. 
Copies, or clones, of the data live in the cache memory. The STR sets the dirty bit 
because this clone of the data will no longer match what is in main memory. It is now 
dirty. 
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CACHE READS

• What happens when read hit occurs?  (LDR)

• tag field matches
• valid bit is yes
• processor finishes access from cache
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CACHE READS

• What happens when a read miss occurs? (LDR)

• Tag field does not match
• Dirty data must be written down pyramid 
• Processor stalls while block is moved to cache from 

lower level memory. 
• Processor accesses cache value after block is read

• Early-restart strategy improves performance
• Requested-word-first strategy improves performance

Early-restart and requested word first are algorithmic techniques used when the 
block size is not exactly one byte. In this case, multiple bytes are being moved from 
the lower level memory while the processor is stalled. 

• Early-restart releases the processor as soon as the desired byte arrives in the 
cache memory. The cache controller continues moving the rest of the block after 
terminating the stall. 

• Requested-word-first moves the desired word from the lower memory first and 
then releases the processor from stall. The cache controller continues moving the 
rest of the block after terminating the stall. 

Stalls because of cache miss are significant. Cache stalls might hold the pipeline for 
hundreds of clock cycles because memory down the pyramid is so much slower. Any 
technique to reduce bubbles in the pipeline is important. 
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CACHE WRITES

• Writes result in different values across levels.  (STR)

• cache value
• next lower level value

• A write strategy must be implemented.  Why?

• data must be kept consistent in all places
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CACHE WRITES

• Three classic cache write strategies:

• write-through
• write-buffer
• write-back

• Advanced techniques exist and are in use
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CACHE WRITES

• Classic write-through strategy:

• Every write updates cache 
• Cache controller updates the next lower level
• Each cache controller continues the updates
• Results in main memory matching the clones at all times
• Data and clones are always consistent
• This has less desirable performance as the processor is 

stalled for the entire pyramid write-through
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CACHE WRITES
• Classic write-buffer strategy:

• Variation of the write-through strategy
• Every write updates a cache buffer
• The stall is released after the buffer write
• Write-buffer controller updates next lower level

• This technique has improved performance 
than when no buffer because the stalls are 
released. But, clones do not update in the 
same “time chunk” and thus can be 
inconsistent as processor instructions 
execute. 
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CACHE WRITES

• Classic write-back strategy:

• Every write updates only cache 
• Blocks must be written back when replaced in the bin
• The write-bit flags dirty data that must move down pyramid 

• More complex but higher performance / less stall
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IMPROVING PERFORMANCE

• Organizational techniques

• Increase memory bus width to move more bytes at once
• Use advanced RAMs with double-data rate and burst 

technology
• Change the cache organization from direct-mapped to 

something that improves performance

• Double-data rate memories provide values on both edges of the clock. 
• Burst technology allows presentation of a starting address and then rapidly 

provides all sequential values beginning at the address on each clock edge. This 
avoids the overhead of providing each individual address. 
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FULLY-ASSOCIATIVE CACHE

• Block placement into any cache location

• Requires searching entire cache 

• Requires extensive set of comparators

• Expensive

In a fully-associative cache, the hash equation is not used. Instead, the value moving 
into the cache can be placed into any bin. This requires the complete address to be 
stored as the tag field. It also requires comparators at every bin that compare the 
stored tag with the presented cache address. If any bin comparator matches, then a 
hit occurs. If no comparator matches, then a miss occurs. These comparators add 
space and thus expense. 
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SET-ASSOCIATIVE CACHE
• Keep multiple entries at index

• N-way set-associative means a
set of size n at each index

• This example is 2-way set-associative

• Advantages: decreased miss rate

• Disadvantages: increased hit time and 
more comparators that direct mapped

In contrast to the fully-associative cache, a simpler solution that improves upon direct 
cache is the set-associative cache. This type of cache places multiple tag+data fields 
in each bin. The diagram shows a 2-way set-associative cache. 
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SET-ASSOCIATIVE 
REPLACEMENT
• Least-recently used

• Keep the most recently used block
• Replace the oldest block
• Most commonly used scheme

• Random replacement
• Random block replaced
• Does not consider temporal locality!

Because multiple things can now be held in a bin, some algorithmic policy is needed 
to determine which of the bin items gets evicted when something else needs to be 
stored there. 
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