
MEMORY
Dr. Russ Meier

Milwaukee School of Engineering

1

MEMORY PYRAMID

Primary Memory

Secondary Memory

• Primary memory is the working electronic memory used by a running program. It
is volatile – meaning that it loses its values when the power is turned off.

• Secondary memory is long term storage to hold data and programs for later use. It
is non-volatile – meaning that it retains its values when the power is turned off.

• Speed is fastest at the top of the pyramid. These memories are also the most
expensive per bit. Speed and cost both decrease as you go down the pyramid.

• Size is largest at the bottom of the pyramid. These technologies are also the
cheapest per bit. Size decreases as you go up the pyramid.

2

MEMORY PYRAMID
LEVEL NAME TYPE PRICE (2019)

L0 CPU REGISTERS REGISTER On-chip
Microprocessor

Memories
L1 CPU I-CACHE, CPU D-CACHE STATIC RAM

L2 LEVEL 2 SHARED CACHE STATIC RAM

L3 LEVEL 3 SHARED CACHE STATIC RAM

L4 MAIN MEMORY (RAM) DYNAMIC RAM $5/GB

L5 ELECTRONIC DISK (SSD) NAND FLASH ROM $0.13/GB

L6 MAGNETIC HARD DRIVE (HDD) MAGNETIC PLATTER $0.05/GB

L7 MAGNETIC TAPE DRIVE MAGNETIC TAPE $0.006/GB

Pricing pulled from multiple electronic warehouses and
averaged on May 15, 2019

3

IC MEMORY COMPARISON
• Static RAM

• fast: 10-50 ns delay
• space per bit: 6 transistors per bit
• expensive: $300-$500 per GB (2019 price: digikey.com)
• use today: cache memory
• refresh: not required : static storage

4

IC MEMORY COMPARISON

• Dynamic RAM

• slower: 20-50 ns delay
• space per bit: 1 transistor per bit
• cheap: $10-15 per GB
• use today: main memory
• refresh: required : dynamic storage

5

LOCALITY PRINCIPLES
• Memory pyramid exploits locality principles for speed.

• Temporal locality:
• items tends to be re-referenced again soon
• examples: for and while loops, tight branches

• Spatial locality:
• Items with close memory addresses tend to be used

together
• examples: sequential program instructions, arrays

“Bring stuff being used together now closer to the processor”

The locality principles led to the design of the memory pyramid. Smaller, faster, more
expensive memories could be used close to the microprocessor to ensure the fastest
access when the CPU needs the data. The goal would be to bring stuff being used
together now closer to the processor.

6

CACHE MEMORY

• Cache: a small hiding place

• Cache memory:
• smaller memory than main memory
• between the microprocessor and main memory
• first used commercially in the 1960s
• modern microprocessors are Harvard organized with

separate instruction and data caches
• some microcontrollers also have cache memory

• The register file is part of the central processing unit. It can be manipulated
directly by assembly language programmers, but is usually not directly
manipulated by high-level language programmers.

• Most programmers write in high-level languages. To these programmers the “main
memory” is what they think of as their working storage.

• The locality principles suggested that a hidden smaller memory be placed between
the larger main memory and the CPU registers. This hidden cache of data could be
accessed more quickly by the CPU than main memory because it was smaller and
faster.

• Caches are faster because they are fabricated today on the same silicon die as the
central processing unit – avoiding the pin delay. They are faster because they are
built from static-RAM rather than the forgetful DRAM that must be refreshed. They
are faster because they operate at the speed of the CPU clock, while main memory
usually operates at the speed of the memory bus protocol. These are some of the
examples of why cache is faster. The Computer Architecture 3 elective examines
memory systems in detail.

• Separate instruction and data caches support pipelines in modern central
processing units.

7

CACHE MEMORY

• Cache memory is also
hierarchically split

• Traditional split
• Level 1: microprocessor

instruction and data
• Level 2: separate silicon

packaged in same chip
• Level 3: motherboard

• Today
• microprocessors generally

have L1, L2, and L3 on-chip

Intel Core I5-750
This image is widely distributed on the Internet without attribution.

Every effort was made to find the original image so that
copyright attribution could be added.

For academic use only.

8

CACHE MEMORY

• Memory address
blocks map to cache
blocks

• Multiple memory
blocks will map to the
same cache location

• Modulo-n arithmetic
hash function

• In its most basic form, a cache memory implements a hash table.
• Memory addresses are hashed into the smaller memory using a module-n

arithmetic hash function.
• Remember that in computer architecture, a memory address represents a

particular byte in memory.
• In this example, addresses are shown by their byte number.
• The example shows that byte B3 and byte B19 both map to location B3 in the

smaller cache memory. This bin, bin B3, is the has location for both bytes.
• The hash location, also called the cache address, can be calculated as the

remainder of taking the byte number and dividing by the size of the cache.
• The remainder is the modulo result.
• 3 / 16 = 0 remainder 3. Thus, byte B3 hashes into cache bin B3.
• 19 mod 16 = 3. Thus, byte B19 also hashes into cache bin B3.

9

DIRECT MAPPED CACHES

• simplest cache organization

• each memory address maps to exactly one cache

• classic mapping equation
• Memory address bits form a binary address = b
• Number of blocks in cache = cache size = n

• cache address = b mod n

10

CACHE TERMINOLOGY

• block
• smallest data size transferred between levels

• blocksize
• size of the block in bytes

• memory hit
• address access finds data in memory

• memory miss
• address access does not find data in memory

11

CACHE TERMINOLOGY

• hit rate
• fraction of times a memory hit occurs

• miss rate
• fraction of times a memory miss occurs
• Miss rate = 1 – hit rate
• m = 1 – h

• hit time
• examine address, determine validity, retrieve

12

CACHE TERMINOLOGY

• miss penalty
• examine address, determine invalid, replace item by

reading from lower level, retrieve
• significantly longer delay than hit time

• coherency
• process of maintaining consistent data across

memory levels as misses occur
• coherency replacement strategies are important

13

DIRECT MAPPED CACHE
CACHE BIN
ADDRESS

WRITTEN
(DIRTY BIT)

VALID TAG DATA

000 N N

001 N N

010 N N

011 N N

100 N N

101 N N

110 N N

111 N N

This shows an initialized cache.
No data values are valid yet because no LDR has executed.
No data values are dirty yet because no STR has executed.

The next few slides will illustrate a cache memory filling bin locations with data. Loads
and stores will change valid and dirty bits. Tags will be inserted. Fake data will be used
to represent “something that came from the lower levels of memory.”

14

DIRECT MAPPED CACHE
READ LOCATION 0xFBCA

CACHE
ADDRESS

WRITTEN
(DIRTY BIT)

VALID TAG DATA

000 N N

001 N N

010 N Y 1111 1011 1100 1 0x49

011 N N

100 N N

101 N N

110 N N

111 N N

Miss causes read into cache location 2, tag updated, valid bit changed to yes

The LDR for this read presents address FBCA. It hashes to bin 2.
The cache does not find it. The location is not dirty.

The cache initiates a read from the lower level.

15

DIRECT MAPPED CACHE
READ LOCATION 0x96AF

CACHE
ADDRESS

WRITTEN
(DIRTY BIT)

VALID TAG DATA

000 N N

001 N N

010 N Y 1111 1011 1100 1 0x49

011 N N

100 N N

101 N N

110 N N

111 N Y 1001 0110 1010 1 0xAB

Miss causes read into cache location 7, tag updated, valid bit changed to yes

The LDR for this read presents address 96AF. It hashes to bin 7.
The cache does not find it. The location is not dirty.

The cache initiates a read from the lower level.

16

DIRECT MAPPED CACHE
READ LOCATION 0x0003

CACHE
ADDRESS

WRITTEN
(DIRTY BIT)

VALID TAG DATA

000 N N

001 N N

010 N Y 1111 1011 1100 1 0x49

011 N Y 0000 0000 0000 0 0xFF

100 N N

101 N N

110 N N

111 N Y 1001 0110 1010 1 0xAB

Miss causes read into cache location 3, tag updated, valid bit changed to yes

The LDR for this read presents address 0003. It hashes to bin 3.
The cache does not find it. The location is not dirty.

The cache initiates a read from the lower level.

17

DIRECT MAPPED CACHE
READ LOCATION 0x6826

CACHE
ADDRESS

WRITTEN
(DIRTY BIT)

VALID TAG DATA

000 N N

001 N N

010 N Y 1111 1011 1100 1 0x49

011 N Y 0000 0000 0000 0 0xFF

100 N N

101 N N

110 N Y 0110 1000 0010 0 0xCC

111 N Y 1001 0110 1010 1 0xAB

Miss causes read into cache location 6, tag updated, valid bit changed to yes

The LDR for this read presents address 6826. It hashes to bin 6.
The cache does not find it. The location is not dirty.

The cache initiates a read from the lower level.

18

DIRECT MAPPED CACHE
READ LOCATION 0x992E

CACHE
ADDRESS

WRITTEN
(DIRTY BIT)

VALID TAG DATA

000 N N

001 N N

010 N Y 1111 1011 1100 1 0x49

011 N Y 0000 0000 0000 0 0xFF

100 N N

101 N N

110 N Y 1001 1001 0010 1 0x00

111 N Y 1001 0110 1010 1 0xAB

Miss causes conflict, not dirty, read overwrites location 6, tag updated, valid bit stays yes

The LDR for this read presents address 992E. It hashes to bin 6.
The cache does not find it. The location is not dirty.

The cache initiates a read from the lower level and overwrites.

19

DIRECT MAPPED CACHE
WRITE LOCATION 0x992E WITH 0x8E

CACHE
ADDRESS

WRITTEN
(DIRTY BIT)

VALID TAG DATA

000 N N

001 N N

010 N Y 1111 1011 1100 1 0x49

011 N Y 0000 0000 0000 0 0xFF

100 N N

101 N N

110 Y Y 1001 1001 0010 1 0x8E

111 N Y 1001 0110 1010 1 0xAB

Hit, mark dirty, write overwrites location 6, valid bit stays yes,

The STR for this read presents address 992E. It hashes to bin 6.
The cache finds the address tag. The data location is written.

The dirty bit is set because of the STR of new data.

Remember that the data lives in main memory during execution of a program.
Copies, or clones, of the data live in the cache memory. The STR sets the dirty bit
because this clone of the data will no longer match what is in main memory. It is now
dirty.

20

CACHE READS

• What happens when read hit occurs? (LDR)

• tag field matches
• valid bit is yes
• processor finishes access from cache

21

CACHE READS

• What happens when a read miss occurs? (LDR)

• Tag field does not match
• Dirty data must be written down pyramid
• Processor stalls while block is moved to cache from

lower level memory.
• Processor accesses cache value after block is read

• Early-restart strategy improves performance
• Requested-word-first strategy improves performance

Early-restart and requested word first are algorithmic techniques used when the
block size is not exactly one byte. In this case, multiple bytes are being moved from
the lower level memory while the processor is stalled.

• Early-restart releases the processor as soon as the desired byte arrives in the
cache memory. The cache controller continues moving the rest of the block after
terminating the stall.

• Requested-word-first moves the desired word from the lower memory first and
then releases the processor from stall. The cache controller continues moving the
rest of the block after terminating the stall.

Stalls because of cache miss are significant. Cache stalls might hold the pipeline for
hundreds of clock cycles because memory down the pyramid is so much slower. Any
technique to reduce bubbles in the pipeline is important.

22

CACHE WRITES

• Writes result in different values across levels. (STR)

• cache value
• next lower level value

• A write strategy must be implemented. Why?

• data must be kept consistent in all places

23

CACHE WRITES

• Three classic cache write strategies:

• write-through
• write-buffer
• write-back

• Advanced techniques exist and are in use

24

CACHE WRITES

• Classic write-through strategy:

• Every write updates cache
• Cache controller updates the next lower level
• Each cache controller continues the updates
• Results in main memory matching the clones at all times
• Data and clones are always consistent
• This has less desirable performance as the processor is

stalled for the entire pyramid write-through

25

CACHE WRITES
• Classic write-buffer strategy:

• Variation of the write-through strategy
• Every write updates a cache buffer
• The stall is released after the buffer write
• Write-buffer controller updates next lower level

• This technique has improved performance
than when no buffer because the stalls are
released. But, clones do not update in the
same “time chunk” and thus can be
inconsistent as processor instructions
execute.

26

CACHE WRITES

• Classic write-back strategy:

• Every write updates only cache
• Blocks must be written back when replaced in the bin
• The write-bit flags dirty data that must move down pyramid

• More complex but higher performance / less stall

27

IMPROVING PERFORMANCE

• Organizational techniques

• Increase memory bus width to move more bytes at once
• Use advanced RAMs with double-data rate and burst

technology
• Change the cache organization from direct-mapped to

something that improves performance

• Double-data rate memories provide values on both edges of the clock.
• Burst technology allows presentation of a starting address and then rapidly

provides all sequential values beginning at the address on each clock edge. This
avoids the overhead of providing each individual address.

28

FULLY-ASSOCIATIVE CACHE

• Block placement into any cache location

• Requires searching entire cache

• Requires extensive set of comparators

• Expensive

In a fully-associative cache, the hash equation is not used. Instead, the value moving
into the cache can be placed into any bin. This requires the complete address to be
stored as the tag field. It also requires comparators at every bin that compare the
stored tag with the presented cache address. If any bin comparator matches, then a
hit occurs. If no comparator matches, then a miss occurs. These comparators add
space and thus expense.

29

SET-ASSOCIATIVE CACHE
• Keep multiple entries at index

• N-way set-associative means a
set of size n at each index

• This example is 2-way set-associative

• Advantages: decreased miss rate

• Disadvantages: increased hit time and
more comparators that direct mapped

In contrast to the fully-associative cache, a simpler solution that improves upon direct
cache is the set-associative cache. This type of cache places multiple tag+data fields
in each bin. The diagram shows a 2-way set-associative cache.

30

SET-ASSOCIATIVE
REPLACEMENT
• Least-recently used

• Keep the most recently used block
• Replace the oldest block
• Most commonly used scheme

• Random replacement
• Random block replaced
• Does not consider temporal locality!

Because multiple things can now be held in a bin, some algorithmic policy is needed
to determine which of the bin items gets evicted when something else needs to be
stored there.

31

