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GOALS

• Exploit instruction level parallelism 
• Multiple instructions executing
• Improve throughput 
• Improve performance

The goal of pipelines is to exploit instruction level parallelism.  Parallel 
execution implies that multiple instructions are in some stage of 
execution at the same time. If we can efficiently use the processor 
circuits by filling them with some instruction at all times, then we should 
be able to improve throughput (the number of instructions completing 
per unit time) and performance (the total execution time of the program) 
when compared against the single-cycle processor where only one 
instruction is in the circuitry at any time. 
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STARTING POINT

• Design a regular instruction set

• Implement a single cycle processor

• Identify stages of instruction lifetime

• Insert place pipeline registers between stages

• Insert implement hazard protection

Pipelining requires a very regular instruction set. Regularity in the 
instruction set will lead to simpler circuitry. Simpler implies faster 
because there will not be as many gate delays. Often, a pipeline 
architect will begin by sketching a single-cycle processor. This allows 
the architect to identify the circuitry required to implement the instruction 
set and organize it into circuit stages. These stages of instruction 
lifetime are then separated by pipeline registers that sample data from 
one stage and advance it to the next. The architect must then consider 
the hazards that naturally exist in programming. These hazards are 
discussed later in the presentation. Hazards prevent the pipeline from 
remaining fully active at all times. In other words, certain hazards may 
stall the pipeline – allowing some instructions to move forward through 
later circuit stages while others remain stalled in the earlier stages. 
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ARM BASIC PIPELINE

• Five circuit stages : IF, ID, EX, MEM, WB

• Five pipeline registers : PC, IFID, IDEX, EXMEM, MEMWR

Image drawn by Dr. Russ Meier, Milwaukee School of Engineering, 2019

The ARM architects created a regular instruction set that can be easily 
pipelined. The diagram shows the signal names used in the CE1921 
ARMv4 central processing unit circuit. Color codes are used to help you 
see the instructions control signals moving through the pipelined and 
getting “hotter” as they get closer to completing the instruction. 
Arithmetic flow feedback paths are drawn downward while control flow 
feedback paths are drawn upward.  Signal busses are shown as larger 
wires than single signals. Clock and reset signals are implied by the 
registers. 

The full pipelined processor microarchitecture was drawn on the 
whiteboard in lecture. This diagram collapses the components of each 
stage into a black box labeled with the stage name. For example, the 
instruction ROM, PC+4 adder, and PC+8 adder have been collapsed 
into the FETCH black box symbol. Similarly, the source multiplexer the 
ALU, and the CPSR have been bundled into the execute stage. 

Here are some key points about the pipelined signals:

• Signals that do not leave a stage do not pipeline. For example, the 



controller creates REGDST to choose the A2 address in decode. This signal 
does not pipeline. Similarly, the EXTS signal is used in decode and does not 
pipeline. On the other hand, REGWR is needed by the writeback stage and 
thus IDEX, EXMEM, and MEMWB must all sample this signal. As a signal 
pipelines, its name changes to reflect the stage the instruction is in. In 
lecture, REGWR represented the controller command in decode, REGWRE 
represented the instruction in execute, REGWRM represented the 
instruction in memory, and REGWRW represented the instruction in 
writeback. 

• Like REGWR, A3 must pipeline the entire length of the pipeline because the 
destination address is part of the instruction and the instruction doesn’t 
finish until writeback. 

• PC+8 pipelines through IFID in our classroom implementation because the 
branch address adder, the extender and the controller were placed in the 
decode circuit. 

• RD2 is the memory data in STR instructions. Thus, it must pipelined through 
IDEX and EXMEM. 
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PIPELINED INSTRUCTIONS
Instruction 1

Instruction 2

Instruction 3

Instruction 4

Instruction 5

Instruction 6

This diagram illustrates instruction level parallelism. Time is the 
horizontal axis while instructions are plotted on the vertical axis. Each 
circuit stage block represents one clock period. The fetch circuit 
retrieves the next instruction (PC+4) on each clock period. After five 
instructions, the pipeline will be full and, as long as the pipeline stays 
full with valid instructions, an instruction completes on each clock 
period.  Virtually, it appears that an instruction completes every clock 
cycle – even though that is not the real case. It takes five clock periods, 
but because multiple instructions are in flight, there is no longer wasted 
delay. 

In the single cycle circuit, the clock period was set to the summation of 
all stage delays: 𝜏_𝑆𝐶𝑃=∆_𝐹+∆_𝐷+∆_𝐸+∆_𝑀+∆_𝑊𝐵

In the pipelined processor, the clock period is reduced to be the 
memory stage delay: 〖 𝜏〗_𝑃𝐼𝑃𝐸=∆_𝑀

Ideally, the new period is one-fifth of the original.  In this ideal case, the 
full pipeline is completing an instruction 5 times faster than the single 
cycle processor. 



Consider this example. Suppose a one million instruction program executes on 
a single-cycle processor with a clock period of 5μs. This program will require 
1E6 instructions * 5E-6 s / instruction = 5s. 

Now, if the pipelined version can achieve the ideal clock period of 5μs/5 stages 
= 1μs, then the new execution time assuming a full pipeline for all one million 
instruction is 1E6 * 1E-6 = 1s. 

This shows that pipelining improves performance as long as the pipeline 
remains full. 
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PIPELINE ADVANTAGES

• Multiple instructions in flight

• One instruction finishes every clock cycle

• Very efficient time usage of components
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PIPELINE HAZARDS

•Structural hazards
•Data hazards
•Control hazards

Unfortunately, keeping the pipeline full is a hard task. We know that it is 
important to keep it full to improve performance. Things that prevent us 
from keeping the pipeline full are called hazards. Hazards fall into three 
categories:

• Structural exist when the circuit itself naturally limits performance. 

• Data hazards exist when programmers regularly reuse destination 
registers in very nearby assembly language instructions as source 
data values. 

• Control hazards exist because conditional branches are natural in 
algorithms. 
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STRUCTURAL HAZARDS

• Caused by component reuse
• Repeat components to eliminate
• Example: sharing memory for both 
instructions and data

• Eliminate: use Harvard memory 
organization with separate instruction 
and data memories

Structural hazards are most often caused because the circuit fails to 
replicate circuitry and instead relies on a common circuit component to 
do multiple tasks during computation. 

• One example is the shared instruction and data memory. The 
address presented to the memory can only represent either the data 
address or the instruction address in every clock cycle, but not both. 
To eliminate the hazard, the Harvard organization is used rather than 
the Princeton. 

• Another example is the arithmetic circuitry that calculates the branch 
address. If these adders are not included, and instead the 
calculations relied on the ALU, then they could not occur at the same 
time that the instructions arithmetic is occurring. 
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DATA HAZARDS

•Register-use hazards
•Load-use hazards

Data hazards exist when an assembly language statement uses the 
destination register of an earlier instruction before that earlier 
instruction has finished executing through the pipeline. 

Two types of use can occur:

• The assembly language statement can use the destination register of 
an arithmetic instruction: register-use hazard. 

• The assembly language statement can use the destination register of 
a memory load instruction: load-use hazard. 

Both hazards exist are possible because the instruction in the decode 
stage needs the writeback data from execute or memory. 
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REGISTER-USE HAZARD

IF ID EX MEM WB

IF ID EX MEM WB

ADD R0,R1,R2

ADD R3,R0,R4

IF ID EX MEM WB

IF ID STALL STALL ID EX MEM WB

ADD R0,R1,R2

ADD R3,R0,R4

Consider the two instructions shown in the two diagram. 

• The dashed rectangle illustrates the register-use hazard at Rn in the 
second instruction. In that instruction, Rn is equal to the 
destination register Rd of the instruction immediately in front of it. 

• The pipeline must stall because the value of R0 is not stored I the 
register file when the second instruction needs it. 

• Writeback periods that do not have valid write-backs are indicated in 
the second diagram with bubble symbols.. 

• In this example, the distance between the instruction with Rn = R0 
and the instruction with Rd = 0 is one. When the distance is one, 
three bubbles are inserted. 

• In our class, we have used a single clock edge (rising) to advance all 
registers in the processor. If we had chosen to sample the register 
file on the falling edge, then the decode circuit could complete 
decode in the second have of the writeback clock cycle. This would 
result in only two bubbles inserted rather than three. 
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REGISTER-USE HAZARD

IF ID EX MEM WB

IF ID EX MEM WB

IF ID STALL STALL EX MEM WB

ADD R0,R1,R2

ADD R3,R5,R4

ADD R12,R0,R5

Consider the three instructions shown in the two diagram. 

tw

• In this example, the distance between the instruction with Rn = R0 
and the instruction with Rd = R0 is two. When the distance is two, 
two bubbles are inserted. 
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REGISTER-USE HAZARD

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID STALL EX MEM WB

ADD R0,R1,R2

ADD R3,R5,R4

ADD R12,R7,R5

SUB R11,R0,R9

Consider the three instructions shown in the two diagram. 

• In this example, the distance between the instruction with Rn = R0 
and the instruction with Rd = R0 is three. When the distance is 
three, one bubble is inserted. 
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REGISTER-USE HAZARD

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

IF ID EX MEM WB

ADD R0,R1,R2

ADD R3,R5,R4

ADD R12,R7,R5

SUB R11,R6,R9

EOR R15,R0,R10

Consider the three instructions shown in the two diagram. 

• In this example, the distance between the instruction with Rn = R0 
and the instruction with Rd = R0 is four. When the distance is four, 
no bubbles are inserted. 

The number of bubbles inserted is equal to four minus the distance. 
Bubbles = 4 – hazard distance, where the hazard distance is a 
positive integer in the set {1, 2, 3, 4}. 
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DATA HAZARD TECHNIQUES

•Stalls and bubble insertion 
•Data forwarding
•Out-of-order execution

Computer architects worked for many decades to create different 
solutions for data hazards that could be evaluated for efficiency and 
overall performance. 

• The simplest technique to handle the data hazard is to stall the 
pipeline. Stalls introduce bubbles, however, which reduce the overall 
throughput as instructions stop writing back for a few periods of time.  
Stalls are undesirable. In fact, a good rule of thumb for pipeline 
designers is every bubble counts. This reminds designers to work 
to eliminate or minimize bubbles. 

• Data forwarding provides the write-back data early using feedback 
lines from later stages to multiplexers in front of ALU A and ALU B. 

• Out-of-order execution finds instructions that can be inserted into stall 
slots without changing the program result. Both compile-time 
techniques and run-time techniques exist. These are advanced 
algorithms discussed in the Computer Architecture 2 elective. 
Interested students can reference Tomasulo’s algorithm and the 
scoreboard technique. 
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DATA FORWARDING
• Data hazards can exist at Rn or Rm. 

• Add a multiplexer at the ALU A input. 

• Add a multiplexer at the ALU B input. 

• Route result signals from execute, memory, and WB to the 
multiplexers. 

• Add control functionality that compares Rn against RdE, 
RdM, and RdWb. 

• Add control functionality that compares Rm against RdE, 
RdM, and RdWb.

• Use the ALUSRCA and ALUSRCB signals to route the 
nearest match as it is the most recent value. 
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CONTROL HAZARDS

• Branches change the PC in decode
• Yet PC+4 is in fetch
• If PCSRC = BrAddr then the instruction in 

fetch must be converted to a bubble. 
• If PCSRC = PC+4 then no action is needed.
• Converting PC+4 to a bubble is called flush. 

Control hazards occur when branches adjust the program counter to 
something besides PC+4. Like data hazards, computer architects have 
spent decades working toward solutions. 

• The simplest technique is to insert a bubble by converting the 
instruction in fetch to a no-operation (NOP). This operation is called 
a flush. This introduces one bubble in the pipeline. A classic way 
architects plan for flush is by ensuring that machine code binary 
number of 0 results in no change to the stored state in the register 
file, memory, and status register. In ARM, an all 0 machine 
corresponds to the instruction ANDEQ R0,R0,R0.  When any number 
is “anded” with itself, the same number results. Thus, there would be 
no change in the state of R0.
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BRANCH PREDICTION

• Can be done by compiler or hardware.
• Algorithms predict the PCSRC value.

• Predict untaken
• Backward branch take, forward branch don’t
• Saturating counter prediction state machines
• History tables 

Branch prediction is a control hazard technique designed to eliminate 
the flush is branch prediction.  Many different algorithms have been 
explored. 

• Predict untaken is just defaulting to PC+4 and inserting stalls when 
needed. It is the least effective technique at avoiding stalls. 

• Most loops branch backward. By comparing the sign of the branch 
constant (immediate) in fetch, a predictor can choose to set PCSRC 
= BrAddr if the constant is negative, suggesting backward and likely 
a loop that will execute many times. 

• Many advanced techniques that use history tables of saturating 
counter prediction state machines – one per branch instruction –
exist. These techniques are subjects in the Computer Architecture 2 
elective course. 

• After decades of research, modern advanced techniques achieve 
97% prediction accuracy on benchmark programs.  
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BRANCH PREDICTION

This 2-bit branch predictor state machine shown in this picture has been 
shown to be rather effective. It does not require substantial silicon 
space. As a four state machine, it requires two state bit flip-flops as well 
as the logic to advance it between states based on the actual PCSRC 
signal created by the controller. It is a saturating counter state machine 
with strengthening prediction as the counter nears each end point. In 
other words, at each endpoint, there is a strong prediction while the 
similar state in the middle of the machine is a weaker prediction. 
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