
THINKING ABOUT PIPELINING

 The textbook solution is only one solution to the pipeline.
 Dr. Meier presented an alternative solution in his lecture sections.
 Any solution that implements the ISA is a correct microarchitecture (µA).
 The pipeline uses its circuits efficiently because each stage of instruction execution has

some instruction within it during every clock period. Thus, we say “five instructions are
in flight.”

 One challenge with pipelining is overcoming data dependencies during decode. The
decoding instruction will decode incorrect data if it depends on the write-back register
of some instruction that is ahead of it in the pipeline. Thus, either pipeline stalls or
forwarding is needed. Forwarding is the preferred approach because it keeps the
pipeline moving.

 A second challenge with pipelining is keeping correct instructions fetching on each clock
period. Branch hazards require flushing of an incorrect instruction in IFID when the
decode circuit decides the branch is taken.

 A final challenge with pipelining is keeping the pipeline moving in the presence of data
loads from memory. On a cache memory hit, the pipeline must stall until the LDR
instruction reaches WB. On a cache memory miss, the pipeline will experience a longer
stall because the cache controller will hold the pipeline in stall until the data moves up
from lower levels of memory.

WHAT IS THE PURPOSE OF PIPELINE REGISTERS?

 Pipeline registers divide the processor circuitry into five stages: fetch, decode, execute,
memory access, and write-back.

 The circuit is “divided” because clock edges are needed to sample voltage from one
stage into the next.

 The pipeline registers have classic names: IFID, IDEX, EXMEM, MEMWB.
 Note that both PC and REGFILE are also technically pipeline registers because they

sample and hold numbers that form part of the state of the machine. The PC must stall
when IFID stalls, for example.

 Some pipeline registers must flush – synchronously create a NOP because of pipeline
hazards. These pipeline registers have a flush control signal.

 Some pipeline registers must stall – hold data values into the next clock period rather
than sampling new ones. These pipeline registers have a stall control signal. Stall is really
a “load” control signal – a signal most students are already comfortable with.

 One approach in university classes is to make a general pipeline register that has both
stall and flush. This approach provides a uniform component used in schematic layout
and simulation. Note, however, that two control signals increase complexity and thus
likely results in both larger and slightly slower registers. In practice, architects will only
build stall and flush into registers that need them.

WHAT PIPELINES?

Inter-stage pipeline registers must sample any signal created by the stage on the left for use by
any stage on the right. For example, the IFID register samples any signal created in fetch that is
used by decode or later stages. Here is an initial set – you may find that there are more as you
review and study!

TABLES MAY BE INCOMPLETE! STUDY YOUR CIRCUITS.

DATA

IFID IDEX EXMEM MEMWB
IBUS
PC+4
PC+8

RD1
RD2
RDEST (A3)
IMM32

RD2
RDEST (A3)

ALUF

RDEST (A3)

ALUF
MEMQ

CONTROL SIGNALS

IFID IDEX EXMEM MEMWB
 ALUS

MEMWR
REGSRC
REGWR

MEMWR
REGSRC
REGWR

REGSRC
REGWR

HOW DO I HANDLE BRANCH HAZARDS?

Branch control can be placed in decode or in execute. If a separate branch controller is placed
in execute, the flag register outputs are tapped and used to make a PCSRC decision. A taken
branch results in a flush of both IFID and IDEX because both the fetching (PC+8) and decoding
(PC+4) instruction are now wrong. This introduces two bubbles into the pipeline.

But branch hazards can be detected in the decode stage to reduce the number of bubbles to
one. In ARMv4, a previous instruction has set the flag bits in the flag register. The nearest
dependency could be one instruction ahead, for example:

CMP R9, R10
BEQ POWER2

Thus, flag register output bits are wired back to the decode stage. The flag register is modified
to update on the opposite clock edge as the pipeline registers when placing the branch
controller in the decode stage. This allows you to avoid a stall.

Assuming that rising-edges advance the pipeline:

pipeline advanced, ALU calculates, bits ready flag register samples CVNZ, decode makes
 branch decision

This approach requires a clock period that allows enough time after the flag register sample for
the decode circuitry to interpret CVNZ and change voltage on PCSRC if needed.

 Branch not taken: do nothing
 Branch taken: flush instruction behind you, route the branch address
 Result: no stall, one bubble inserted

Remember that each bubble contributes to decreased performance. Bubbles are units of time
where no operation completes (NOP). These are undesirable units of time. While advancing the
branch decision to decode removes one bubble, it does not fully solve the problem. Computer
architects are heavily invested in branch prediction so that the fetch circuit rarely inserts
incorrect instructions in the stream. A wide variety of branch prediction techniques have been
implemented including both compile-time techniques and run-time (dynamic) techniques.
Today, most processors implement a statistical dynamic run-time table that updates as
branches are executed. The statistical model for each branch gets better as it executes
repeatedly. These processors achieve greater than 90% and some closer to 98% success.
Accurate prediction results in constant pipeline flow and no bubbles are inserted. So, to
achieve 98% success implies that architects have achieved techniques that keep the pipeline full
most of the time. Branch prediction is a topic in the Computer Architecture 2 elective course.

HOW DO I HANDLE DATA HAZARDS

There are two types of data hazards:

 register-use, and
 load-use

Register-use hazards exist because a data source address, Rn or Rm in the case of ARMv4, is the
same as the destination bit field of instructions that are farther down the pipeline but not yet
finished. Load-use hazards exist because your data sources are the destination register of an
LDR instruction.

 There are three basic hardware approaches to handling data hazards.

1. Stall the pipeline until the instruction you depend on completes.
2. Forward the result from the function ahead of you back to the ALU for use.
3. Reordering the assembly language instructions so that instructions that don’t change

the final calculated program results are moved between the instructions experiencing
the hazard. This “out-of-order” instruction sequencing can be done by the compiler at
compile-time or identified by a hardware out-of-order dispatch circuit at run-time.
These approaches are advanced topics examined in MSOE elective courses in computer
architecture.

HANDLING REGISTER-USE HAZARDS WITH FORWARDING

 A forwarding controller must be placed in either decode or execute.
 Placing the forwarding controller in the decode circuit results in multiplexers to select

RD1 and RD2 to the left of IDEX. These multiplexers receive the REGFILE RD1 and RD2 as
well as the ALUF result from EX, MEM, and the WB result from WB. Because the opcode
bits, command bits, and other machine code bits are available in decode they can be
directly connected to the forwarding controller and do not need to pipeline.

 Placing the forwarding controller in the execute circuit requires no additional
multiplexers in decode but does expand multiplexers in execute. The execute
multiplexers now must include the ALUF result from MEM and the WB result from WB.
Because this controller resides in execute, the opcode bits, command bits, and other
machine code bits needed to complete the comparison checks must be piped from
decode to execute through the IDEX register.

HANDLING LOAD-USE HAZARDS WITH FORWARDING

 Similar to register-use, the forwarding controller handles this type of hazard. Thus, it can
be handled in either decode or execute depending on controller placement.

 LDR requires the pipeline to stall until it reaches WB. This is because LDR is accessing
memory during the memory phase and the clock period has been set to be just greater
than this access delay. Thus, there is no time for any use of the data before the clock
edge – the controller must stall one clock period while this access occurs and the result
reaches WB. The result can then be forwarded from WB. In class, the possibility of
forwarding MEMQ was explored in the forwarding multiplexers. In practice, the stall is
most often inserted because of the tight timing constraints and MEMQ is not routed and
multiplexed in decode.

SPECIAL CASES OF FORWARDING

 ARMv4 does have one special case of forwarding: STR.
 The STR instruction format is: STR Rd, [Rn+imm].
 Forwarding for Rn is no different than any other Rn forwarding condition and thus the

forwarding controller will already be handling this potential dependency.
 But, STR does not use Rm and thus any hazard on Rd will not be handled correctly.
 Here is an example:

ADD R5, R6, R7
STR R5, [R9]

Thus, the forwarding controller must also compare the STR Rd field against the destination
addresses ahead of it in the pipeline!

