
THINKING ABOUT PIPELINING 
 

 The textbook solution is only one solution to the pipeline.  
 Dr. Meier presented an alternative solution in his lecture sections.  
 Any solution that implements the ISA is a correct microarchitecture (µA).  
 The pipeline uses its circuits efficiently because each stage of instruction execution has 

some instruction within it during every clock period. Thus, we say “five instructions are 
in flight.” 

 One challenge with pipelining is overcoming data dependencies during decode. The 
decoding instruction will decode incorrect data if it depends on the write-back register 
of some instruction that is ahead of it in the pipeline. Thus, either pipeline stalls or 
forwarding is needed. Forwarding is the preferred approach because it keeps the 
pipeline moving.  

 A second challenge with pipelining is keeping correct instructions fetching on each clock 
period. Branch hazards require flushing of an incorrect instruction in IFID when the 
decode circuit decides the branch is taken.  

 A final challenge with pipelining is keeping the pipeline moving in the presence of data 
loads from memory. On a cache memory hit, the pipeline must stall until the LDR 
instruction reaches WB. On a cache memory miss, the pipeline will experience a longer 
stall because the cache controller will hold the pipeline in stall until the data moves up 
from lower levels of memory.  

 
WHAT IS THE PURPOSE OF PIPELINE REGISTERS? 
 

 Pipeline registers divide the processor circuitry into five stages: fetch, decode, execute, 
memory access, and write-back.  

 The circuit is “divided” because clock edges are needed to sample voltage from one 
stage into the next.  

 The pipeline registers have classic names:  IFID, IDEX, EXMEM, MEMWB.  
 Note that both PC and REGFILE are also technically pipeline registers because they 

sample and hold numbers that form part of the state of the machine. The PC must stall 
when IFID stalls, for example.  

 Some pipeline registers must flush – synchronously create a NOP because of pipeline 
hazards. These pipeline registers have a flush control signal.  

 Some pipeline registers must stall – hold data values into the next clock period rather 
than sampling new ones. These pipeline registers have a stall control signal. Stall is really 
a “load” control signal – a signal most students are already comfortable with.  

 One approach in university classes is to make a general pipeline register that has both 
stall and flush. This approach provides a uniform component used in schematic layout 
and simulation. Note, however, that two control signals increase complexity and thus 
likely results in both larger and slightly slower registers. In practice, architects will only 
build stall and flush into registers that need them.  

 



WHAT PIPELINES? 
 
Inter-stage pipeline registers must sample any signal created by the stage on the left for use by 
any stage on the right. For example, the IFID register samples any signal created in fetch that is 
used by decode or later stages. Here is an initial set – you may find that there are more as you 
review and study! 
 

TABLES MAY BE INCOMPLETE! STUDY YOUR CIRCUITS.  
 
DATA 

IFID IDEX EXMEM MEMWB 
IBUS 
PC+4 
PC+8 

RD1 
RD2 
RDEST (A3) 
IMM32 
 
 

 
RD2 
RDEST (A3) 
 
ALUF 

 
 
RDEST (A3) 
 
ALUF 
MEMQ 

 
CONTROL SIGNALS 

IFID IDEX EXMEM MEMWB 
 ALUS 

MEMWR 
REGSRC 
REGWR 

 
MEMWR 
REGSRC 
REGWR 
 

 
 
REGSRC 
REGWR 
 

 
  



HOW DO I HANDLE BRANCH HAZARDS? 
 
Branch control can be placed in decode or in execute. If a separate branch controller is placed 
in execute, the flag register outputs are tapped and used to make a PCSRC decision. A taken 
branch results in a flush of both IFID and IDEX because both the fetching (PC+8) and decoding 
(PC+4) instruction are now wrong. This introduces two bubbles into the pipeline.  
 
But branch hazards can be detected in the decode stage to reduce the number of bubbles to 
one. In ARMv4, a previous instruction has set the flag bits in the flag register. The nearest 
dependency could be one instruction ahead, for example: 
 
CMP R9, R10 
BEQ POWER2 
 
Thus, flag register output bits are wired back to the decode stage. The flag register is modified 
to update on the opposite clock edge as the pipeline registers when placing the branch 
controller in the decode stage. This allows you to avoid a stall.  
 
Assuming that rising-edges advance the pipeline: 
 

pipeline advanced, ALU calculates, bits ready flag register samples CVNZ, decode makes 
       branch decision 
 
This approach requires a clock period that allows enough time after the flag register sample for 
the decode circuitry to interpret CVNZ and change voltage on PCSRC if needed.  
 

 Branch not taken: do nothing  
 Branch taken: flush instruction behind you, route the branch address 
 Result: no stall, one bubble inserted 

 
 
Remember that each bubble contributes to decreased performance.  Bubbles are units of time 
where no operation completes (NOP). These are undesirable units of time. While advancing the 
branch decision to decode removes one bubble, it does not fully solve the problem. Computer 
architects are heavily invested in branch prediction so that the fetch circuit rarely inserts 
incorrect instructions in the stream. A wide variety of branch prediction techniques have been 
implemented including both compile-time techniques and run-time (dynamic) techniques. 
Today, most processors implement a statistical dynamic run-time table that updates as 
branches are executed. The statistical model for each branch gets better as it executes 
repeatedly. These processors achieve greater than 90% and some closer to 98% success. 
Accurate prediction results in constant pipeline flow and no bubbles are inserted. So, to 
achieve 98% success implies that architects have achieved techniques that keep the pipeline full 
most of the time. Branch prediction is a topic in the Computer Architecture 2 elective course.  
 



 
HOW DO I HANDLE DATA HAZARDS 
 
There are two types of data hazards: 
 

 register-use, and 
 load-use 

 
Register-use hazards exist because a data source address, Rn or Rm in the case of ARMv4, is the 
same as the destination bit field of instructions that are farther down the pipeline but not yet 
finished. Load-use hazards exist because your data sources are the destination register of an 
LDR instruction.  
 
 There are three basic hardware approaches to handling data hazards.  
 

1. Stall the pipeline until the instruction you depend on completes.  
2. Forward the result from the function ahead of you back to the ALU for use. 
3. Reordering the assembly language instructions so that instructions that don’t change 

the final calculated program results are moved between the instructions experiencing 
the hazard. This “out-of-order” instruction sequencing can be done by the compiler at 
compile-time or identified by a hardware out-of-order dispatch circuit at run-time. 
These approaches are advanced topics examined in MSOE elective courses in computer 
architecture.  

 
HANDLING REGISTER-USE HAZARDS WITH FORWARDING 
 

 A forwarding controller must be placed in either decode or execute.  
 Placing the forwarding controller in the decode circuit results in multiplexers to select 

RD1 and RD2 to the left of IDEX. These multiplexers receive the REGFILE RD1 and RD2 as 
well as the ALUF result from EX, MEM, and the WB result from WB. Because the opcode 
bits, command bits, and other machine code bits are available in decode they can be 
directly connected to the forwarding controller and do not need to pipeline.  

 Placing the forwarding controller in the execute circuit requires no additional 
multiplexers in decode but does expand multiplexers in execute. The execute 
multiplexers now must include the ALUF result from MEM and the WB result from WB. 
Because this controller resides in execute, the opcode bits, command bits, and other 
machine code bits needed to complete the comparison checks must be piped from 
decode to execute through the IDEX register.  

 
 
 
 
 
 



 
 
HANDLING LOAD-USE HAZARDS WITH FORWARDING 
 

 Similar to register-use, the forwarding controller handles this type of hazard. Thus, it can 
be handled in either decode or execute depending on controller placement.  

 LDR requires the pipeline to stall until it reaches WB. This is because LDR is accessing 
memory during the memory phase and the clock period has been set to be just greater 
than this access delay. Thus, there is no time for any use of the data before the clock 
edge – the controller must stall one clock period while this access occurs and the result 
reaches WB. The result can then be forwarded from WB. In class, the possibility of 
forwarding MEMQ was explored in the forwarding multiplexers. In practice, the stall is 
most often inserted because of the tight timing constraints and MEMQ is not routed and 
multiplexed in decode.  

 
SPECIAL CASES OF FORWARDING 
 

 ARMv4 does have one special case of forwarding: STR.  
 The STR instruction format is:  STR Rd, [Rn+imm].  
 Forwarding for Rn is no different than any other Rn forwarding condition and thus the 

forwarding controller will already be handling this potential dependency.  
 But, STR does not use Rm and thus any hazard on Rd will not be handled correctly.  
 Here is an example: 

 
ADD R5, R6, R7 
STR R5, [R9] 

 
Thus, the forwarding controller must also compare the STR Rd field against the destination 
addresses ahead of it in the pipeline!  
 
 


