
EMBEDDED SYSTEMS TECH NOTE ANALOG-TO-DIGITAL CONVERSION

Page 1 of 5 © Dr. Russ Meier, Milwaukee School of Engineering

Embedded systems are product sub-systems controlled by a special-purpose computer. The computer

provides software-control by using transducers called actuators and sensors.

• Sensors are transducers that convert physical energy to electrical energy. In general, sensors

meter the environment by measuring some change in a physical parameter.

• Actuators are transducers that convert electrical energy to physical energy. In general,

actuators change the environment by using electricity to change a physical parameter.

• Microcontrollers are single-chip computers that are the brain of most embedded systems.

• Figure 1 is a basic model used to diagram embedded systems that use microcontrollers.

Figure 1: The Basic Embedded System Model

Analog sensors produce analog signals.

• Analog signals are continuous, real-values electrical signals.

• Example analog signals include temperature variation, speech, light variation, atmospheric

communications signals, and bioelectric signals such as the ECG.

• Small analog signals may need to be signal conditioned and ranged to larger signals before

presentation to the computer for conversion to binary numbers. Signal conditioning circuits are

not covered in this embedded systems tech note.

Analog-to-digital converters (ADC) are common on-chip microcontroller I/O devices.

• Most ADCs have multiple input pins that can be converted one at a time.

• Some ADCs can convert multiple input pins simultaneously.

• Some ADCs provide built-in amplification and conversion of the differential voltage between

two input pins.

• All ADCs convert the analog voltage to an n-bit binary result.

• Microcontrollers are available with 8-bit, 10-bit, 12-bit, and 16-bit converters. The bitwidth

determines the granularity of voltage conversion.

Basic ADC facts can be stated to summarize the conversion process.

• ADC power supply pins are connected to power supply rails VDD and 0V to provide a full-scale

reference voltage range.

• The range of the ADC is the set of binary numbers that can be produced by the ADC.

EMBEDDED SYSTEMS TECH NOTE ANALOG-TO-DIGITAL CONVERSION

Page 2 of 5 © Dr. Russ Meier, Milwaukee School of Engineering

• The resolution of the ADC is the voltage differential that results in a new binary result.

• The resolution can be calculated by using the equation:

���������	

��� 0

2�

• The range of the ADC output binary numbers is 0 to 2
n
-1.

• The binary number that results for any real voltage conversion can be calculation using:

������

�����������

���������	

 ����������� �

2�

���

• ADC results are integer whole numbers with fractional part truncated.

• Example conversions are shown in Table 1.

TABLE 1: EXAMPLE ADC CALCULATIONS (5V FULL-SCALE RANGE)

realVoltage n Resolution Result in decimal

1.45 V 8 19.6mV 74

 10 4.88mV 296

 12 1.22mV 1187

 16 76.29uV 19005

3.68 V 8 19.6mV 188

 10 4.88mV 753

 12 1.22mV 3014

 16 76.29uV 48234

4.99 V 8 19.6mV 255

 10 4.88mV 1021

 12 1.22mV 4087

 16 76.29uV 65404

0V 8 19.6mV 0

 10 4.88mV 0

 12 1.22mV 0

 16 76.29uV 0

0.3V 8 19.6mV 15

 10 4.88mV 61

 12 1.22mV 245

 16 76.29uV 3932

1.92V 8 19.6mV 98

 10 4.88mV 393

 12 1.22mV 1572

 16 76.29uV 25165

EMBEDDED SYSTEMS TECH NOTE ANALOG-TO-DIGITAL CONVERSION

Page 3 of 5 © Dr. Russ Meier, Milwaukee School of Engineering

The ATmega32 has a very nice on-chip ADC.

• Ten-bit (10-bit) conversions are completed for all samples.

• Left-adjusted results are available for users that choose to only use the upper 8-bits of data.

• Conversion accuracy is related to ADC clock frequency. Atmel recommends 50KHz to 250KHz

for best results.

• ADC clock frequency is programmable through control register bits.

• Each conversion takes 13 clock cycles of the ADC clock.

• Single pins can be sampled.

• A differential voltage between two pins (with amplification) can be sampled.

• Interrupts can be generated at conversion completion.

• A conversion complete flag is provided for polling when interrupts are not used.

The ATmega32 ADC is controlled by software through I/O control registers.

• Configuration registers ADMUX and ADCSRA select ADC behavior.

• Result registers ADCH and ADCL contain conversion results.

ATmega32 control register ADMUX is used for part of ADC configuration.

• Select the ADC power pins.

• Choose left-adjusted or full-result mode.

• Select the single pin or differential group for sampling.

ATmega32 control register ADCSRA is used for part of ADC configuration and completion monitoring.

• Turn on the ADC.

• Start a conversion.

• Select auto-triggering if used.

• Enable interrupts if desired.

• Choose an ADC clock frequency.

• Monitor ADSC for completion if not using interrupts. ADSC clears to 0 at the end of a conversion.

EMBEDDED SYSTEMS TECH NOTE ANALOG-TO-DIGITAL CONVERSION

Page 4 of 5 © Dr. Russ Meier, Milwaukee School of Engineering

Example assembly language:

;** select power supply, left-adjust, and pin 5
;** ADMUX
;** | REFS1 | REFS0 | ADLAR | MUX4 | MUX3 | MUX2 | MUX1 | MUX0 |
;** -- --------------
;**
;** ADCSRA
;** | ADEN | ADSC | ADATE | ADIF | ADIE | ADPS2| ADPS1| ADPS0|
;** -- --------------

;** see Atmel reference guides for bit values
;** assumes a system clock frequency of 16MHz
;** 16MHz / 128 = 125KHz = middle of recommended 50 – 250 KHz

 ldi r16,0b01100101 ; AVCC,LAR,5
 out admux,r16 ; update
 ldi r16,0b11000111 ; ON,START,f=/128
 out adcsra,r16 ; update
adcwait: sbic adcsra,6 ; if done, skip next line
 rjmp adcwait ; else keep waiting
adcdone: in r16,adch ; get left-adjusted result
 …

EMBEDDED SYSTEMS TECH NOTE ANALOG-TO-DIGITAL CONVERSION

Page 5 of 5 © Dr. Russ Meier, Milwaukee School of Engineering

Example C source code:

#include <avr\io.h>
#include <inttypes.h>

/* select power supply, left-adjust, and pin 5
 * ADMUX
 * | REFS1 | REFS0 | ADLAR | MUX4 | MUX3 | MUX2 | MUX1 | MUX0 |
 * --- -------------
 *
 * ADCSRA
 * | ADEN | ADSC | ADATE | ADIF | ADIE | ADPS2| ADPS1| ADPS0|
 * --- -------------
 *
 * see Atmel reference guides for bit values
 * assumes a system clock frequency of 16MHz
 * 16MHz / 128 = 125KHz = middle of recommended 50 – 250 KHz
 */

int main(void)
{

 ADMUX = 0b01100101; /* AVCC,LAR,5 */
 ADCSRA = 0b11000111; /* ON,START, /128 */
 while (ADCSRA & 0b01000000)
 {
 /* do nothing while waiting */
 /* note that all bits clr’d */
 /* except 6. ADC will clear*/
 /* it when done. */
 /* */
 /* thus, AND returns true */
 /* because it is non-zero */
 /* until ADSC clears and */
 /* then it will return 0 */
 /* because 0&0 = 0. */
 }
 if (ADCH < 145)
 {
 …
 }
 else
 {
 …
 }
 return 0;
}

