2)Y1:130 010 BNEY S RN e B (oap 8 C DEVICE DRIVER SUBROUTINES

INTRODUCTION
A device driver is a set of subroutines used to control an 1/O device.

* Device driver subroutines initialize devices.

* Device driver subroutines configure device services.

* Device driver subroutines query (poll) device status.

* Device driver interrupt service subroutines handle asynchronous device events.
* Device drivers are written by the engineer and provided to users.

An application programming interface (API) is a set of function prototypes for any library of functions.

* Device drivers expose an API for application writers to access devices.

* Some operating systems require standard APIs for specific devices such as printers. This
allows any application to access any printer because the OS application always uses the
same functions for any selected printer.

* Embedded systems engineers often build embedded systems without sophisticated
operating systems. Thus, the engineers usually write specific device driver APls.

Project management tools in integrated development environments support multiple files in a project.

* AVR Studio projects can contain multiple files in the project directory.

¢ The main control loop is usually placed in the file called main.c.

* Device driver filenames generally reflect the device under control. For example, adc.h
would contain the function prototypes for an analog-to-digital converter device driver while
adc.c would contain the subroutine implementations

* The #include preprocessor directives is used to add the device driver function prototypes to
the main Cfile. (#include “adc.h”)

¢ Sophisticated build tools manage compiling all project files.

C header files declare the function prototypes, global variables, and interrupt service routines provided
as part of the device driver. These .h files are often the only file distributed to end users because the
subroutine implementations are compiled into library form for distribution. An example is provided on
page 2.

C implementation files contain the C code that implements the function prototypes and interrupt
service routines provided as part of the device driver. These .c files are often precompiled and
distributed to end in library form. An example is provided on the page 3.

CELERRGTERN © Dr. Russ Meier, Milwaukee School of Engineering

2)Y1:130 010 BNEY S RN e B (oap 8 C DEVICE DRIVER SUBROUTINES

/***

* FILENAME:
AUTHOR:
COPYRIGHT:

LICENSE:

PROVIDES:

MODIFIED:

USAGE:

*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*
*

adc.h

meier@msoe.edu <Dr. Meier>

This example is intellectual property of MSOE

Professor Dr. Russ Meier.

Permission is granted for use if the copyright

notice is retained. No person may publish this

code for public use.

MSOE CE2810 embedded systems example .h file

- declares the function prototypes for an ADC
device driver set

Created 10 Dec 2008

- 10 Dec 2008 basic structure

- 11 Dec 2008 comments

- 11 Dec 2008 moved to C99 types

Atmega32 microcontroller

- include this header file in any project that
uses the adc

**/

#ifndef DRIVER _ADC
#define DRIVER _ADC

#include <inttypes.h>

// function:
// provides:
// modifies:
// parameters:
//

// returns:

adc_sample

one-function control of ADC

ADMUX, ADCSRA -- all bits

clk div = 2,4,8,16,32,64,128 division
pin = pin to convert

left-adjusted ADCH result

uint8_t adc_sample(uint8_t clk div, uint8_t pin);

// function:
// provides:
// modifies:
// parameters:
// returns:

adc_convert

one ADC conversion result
ADCSRA ADEN and ADSC bits
none

ADCH, use adc_set_lar before

uint8_t adc_convert(void);

// subroutine:
// provides:
// modifies:
// parameters:

adc_set_clkdiv

control of ADC system clock divider
ADMUX clock divider bits

clk div = 2,4,8,16,32,64,128 division

void adc_set_clkdiv(uint8_t clk div);

// subroutine:
// provides:
// modifies:
// parameters:

adc_set_pin

control of ADC pin to convert
ADMUX pin selection bits

pin to convert as a byte

void adc_set pin(uint8_t pin);

// subroutine:
// provides:
// modifies:
// parameters:

etcetera..

#endif

adc_set_lar

turns on ADC left-adjusted result
ADMUX LAR bit only

none

CELEWAGTERN © Dr. Russ Meier, Milwaukee School of Engineering

2)Y1:130 010 BNEY S RN e B (oap 8 C DEVICE DRIVER SUBROUTINES

/***

* FILENAME: adc.c

* AUTHOR: meier@msoe.edu <Dr. Meier>

* COPYRIGHT: This example is intellectual property of MSOE
* Professor Dr. Russ Meier.

* LICENSE: Permission is granted for use if the copyright
* notice is retained. No person may publish this
* code for public use.

* PROVIDES: MSOE CE2810 embedded systems example .c file

* - implements device driver subroutines defined
* in adc.h file

* MODIFIED: Created 10 Dec 2008

* - 10 Dec 2008 basic structure

* - 11 Dec 2008 comments

* USAGE: Atmega32 microcontroller

*

**/

// preprocessor directives
#include <avr/io.h>
#include <inttypes.h>
#include "adc.h"

// global variables : none

// function: adc_sample

// provides: one-function control of ADC

// modifies: ADMUX, ADCSRA -- all bits

// parameters: clk div = 2,4,8,16,32,64,128 division
// pin = pin to convert

// returns: left-adjusted ADCH result

uint8_t adc_sample(uint8_ t clk_div, uint8_t pin)

{
// ADMUX
// select VCC power pin
// select left-adjusted result
// or in user pin choice after clearing upper bits
ADMUX = 0b01100000 | (pin & 0b00011111);
// ADCSRA
// power-on, start conversion, no interrupts based on clk div
// reference: page 214 and 215 of Atmega32 datasheet
switch(clk_div)

{

case 4: ADCSRA = 0b11000010;
break;

case 8: ADCSRA = 0b11000011;
break;

case 16: ADCSRA = 0b11000100;
break;

case 32: ADCSRA = 0b11000101;
break;

case 64: ADCSRA = 0b11000110;
break;

case 128: ADCSRA = 0b11000111;
break;

// handle 2,2 and all other incorrect choices
default: ADCSRA = 0b11000000;
break;

}
// wait for ADC to complete (ADCSRA bit 6 clears when done)
// wait while the ADCSC bit is still set
// and thus the AND is non-zero
while (etcetera..)

A complete solution will not be included in this tech note. Readers are encouraged to complete
the implementation.

CELERRIGIERN © Dr. Russ Meier, Milwaukee School of Engineering

