EMBEDDED SYSTEMS TECH NOTE BLLIALUGVAN

Embedded systems are product sub-systems controlled by a special-purpose computer. The computer

provides software-control by using transducers called actuators and sensors.

* Sensors are transducers that convert physical energy to electrical energy. In general, sensors

meter the environment by measuring some change in a physical parameter.

* Actuators are transducers that convert electrical energy to physical energy. In general,

actuators change the environment by using electricity to change a physical parameter.

* Microcontrollers are single-chip computers that are the brain of most embedded systems.

* Figure 1is a basic model used to diagram embedded systems that use microcontrollers.

MICROCONTROLLER

SCC ACTUATOR

A

SCC SENSOR

Figure 1. The Basic Embedded System Model

Microcontrollers contain built-in input and output devices (1/0) to coordinate the movement of sensor

and actuator data. In general, the built-in /O devices share the pins of the microcontroller to help

reduce the total pin count. The ATmega32 pin interface is shown in Table 1.

TABLE 1: ATmega32 PORT PINS
PORT NAME | PINS AND DIRECTIONS | SHARED BY THESE 1/O DEVICES
PORTA 8 bidirectional pins Analog-to-digital converter
PORTB 8 bidirectional pins SPI serial, analog comparator, timer, external interrupts
PORTC 8 bidirectional pins Timer, JTAG in-system programming, two-wire serial
PORTD 8 bidirectional pins Timer, external interrupts, UART serial

1/0 control registers hold binary numbers that allow user programmatic control of /0 devices. The

embedded system software will use different types of control registers to configure and interact with
the 1/0 devices.

* Configuration control registers configure 1/0 devices that use port pins.

¢ Direction control registers control the direction of the bidirectional port pins.

* Input registers sample sensor signals on command.

* Output registers control the voltage output to actuator signals.

* Parameter registers hold parameters needed by I/0 device functions. Example include time

values for timer functions and voltage values for analog comparators,

* Result registers hold results produced by some I/0 devices.

¢ Status registers flag events for software notice.

CELERRGTERN © Dr. Russ Meier, Milwaukee School of Engineering

EMBEDDED SYSTEMS TECH NOTE BLLIALUGVAN

1/0 devices are independent hardware units that complete operating system or user program requests.
Two methods are commonly implemented in hardware to allow monitoring of I/0 device activity from
software:

* Completion flag bits are provided in status registers so that polling loops can monitor for event
completion. Polling loops read the status register flags and execute I/O device code only when
flags announce the completion of the I/O request. Polling loops do not meet real-time
constraints because the loop overhead suggests that an event could complete some number of
instructions before the flags are checked again.

* Interrupt signal voltages are provided to announce the event completion in real-time. The
microcontroller checks for 1/0 device interrupt voltages at the completion of each instruction
and it automatically executes an interrupt service subroutine for each interrupt signal. Thus,
the interrupt abstraction provides a method to meet real-time constraints by avoiding user
program overhead.

Interrupt service subroutines (ISRs) are device driver subroutines written by the engineer to handle the
completion of I/0 events.

e Device drivers are sets of subroutines used to control /0 devices.

* Device drivers do not have to contain ISRs if the system software will only interact with the I/0
device through completion flag polling.

* ISR starting addresses are stored in an interrupt vector table so that the microcontroller knows
which ISR the engineer wants executed when the interrupt is signaled. The vector table is
located at fixed memory locations and the engineer must write the starting address for the ISR
to the table using assembly language instructions or appropriate constructs in high-level
languages. Refer to the manufacturer datasheet for the microcontroller to find the vector table
locations.

ISRs are special subroutines because they were not called by a user program but were instead executed
automatically by the CPU in response to an I/O event signal. Interrupt processing is handled
automatically by the microcontroller when an interrupt is signaled.

¢ Additional interrupts are disabled to prevent interrupting the interrupt and missing the real-
time constraint.

* The current program counter is automatically saved to the stack so that software execution can
resume at the same spot after the interrupt.

* The interrupt service routine address is found in the interrupt vector table and written to the
program counter so that the first instruction of the ISR is executed.

¢ The interruption of the user program requires that the values of all CPU registers must be
preserved through the ISR because the user program data is contained in the CPU registers. This
is known as preserving machine state.

CELEWAGTERN © Dr. Russ Meier, Milwaukee School of Engineering

EMBEDDED SYSTEMS TECH NOTE BLLIALUGVAN

o Some microcontrollers have interrupt hardware that automatically preserve machine
state by pushing the registers to the stack and restoring them at the end of the ISR. For
example, the Motorola MC68HC11 stacks all registers automatically.

o Other microcontrollers require the engineer to include appropriate state preservation
instructions in the assembly language of the ISR. The ATmega32 is an example
microcontroller that requires the engineer to write the machine preservation
instructions into the ISR as push-pop pairs.

o The status register should also be preserved because it contains a snapshot of the last
calculation instruction. Remember: interrupts were not expected so the main
program may need the status register information when it is restarted. On the
Atmega32, the status register can be saved as shown in the ISR skeleton:

ISR:
push rl6é
inrl6,sreg ; save sregin rl6 —r16 pushed first
push any others
do ISR work
pop any others
out sreg,rl6 ; restore
pop rl6
reti
* The final instruction of the ISR is a special assembly language instruction. This instruction causes
the un-stacking of any automatically stacked machine state registers, the PC, and re-enables
interrupts.

CELERRIGIERN © Dr. Russ Meier, Milwaukee School of Engineering

