
EMBEDDED SYSTEMS TECH NOTE USING SOFTWARE-CONTROLLED PORT PINS 

 

Page 1 of 4 © Dr. Russ Meier, Milwaukee School of Engineering 

 

Embedded systems are product sub-systems controlled by a special-purpose computer.  The computer 

provides software-control by using transducers called actuators and sensors.   

• Sensors are transducers that convert physical energy to electrical energy.  In general, sensors 

meter the environment by measuring some change in a physical parameter.   

• Actuators are transducers that convert electrical energy to physical energy.  In general, 

actuators change the environment by using electricity to change a physical parameter.   

• Microcontrollers are single-chip computers that are the brain of most embedded systems.   

• Figure 1 is a basic model used to diagram embedded systems that use microcontrollers. 

 

Figure 1:  The Basic Embedded System Model 

Pins interface sensors and actuators to the microcontroller.     

• Ports are named collections of pins for easy programmatic reference.   

• Input-only port pins are only used for sensor signals.   

• Output-only port pins are only used for actuator signals.   

• Bidirectional port pins can be used for either sensor or actuator signals.  

• Pins can be shared by a number of I/O devices to keep the size of the chip small.   

I/O control registers hold binary numbers that determine port pin behavior.  Each program will use 

different types of control registers based on the system functionality and the I/O devices used.   

• Configuration control registers configure I/O devices that use port pins.  Examples include clock 

timing, interrupt masks, and pin edge response.  

• Direction control registers control the direction of bidirectional port pins. 

• Input registers sample sensor signals on command.   

• Output registers control the voltage output to actuator signals. 

• Parameter registers hold parameters needed by I/O device functions. Example include time 

values for timer functions and voltage values for analog comparators,  

• Result registers hold results produced by some I/O devices.   

• Status registers flag events for software notice.   

   

 



EMBEDDED SYSTEMS TECH NOTE USING SOFTWARE-CONTROLLED PORT PINS 

 

Page 2 of 4 © Dr. Russ Meier, Milwaukee School of Engineering 

 

The Atmel ATmega32 8-bit microcontroller has a pin interface summarized in Table 1.   

• Discrete digital I/O is available on all port pins.  

• On-chip I/O devices share the port pins. 

TABLE 1:  ATmega32 PORT PINS 

PORT NAME PINS AND DIRECTIONS SHARED BY THESE I/O DEVICES 

PORTA 8 bidirectional pins Analog-to-digital converter 

PORTB 8 bidirectional pins SPI serial, analog comparator, timer, external interrupts 

PORTC 8 bidirectional pins Timer, JTAG in-system programming, two-wire serial 

PORTD 8 bidirectional pins Timer, external interrupts, UART serial 

 

ATmega32 discrete digital I/O is controlled using direction, input, and output registers.   

• Direction is controlled using direction registers DDRA, DDRB, DDRC, and DDRD.  A zero in a bit 

position selects input electronics for the corresponding pin while a one in a bit position selects 

output electronics.   

• Output voltages are controlled using output registers PORTA, PORTB, PORTC, and PORTD.  A 

zero in a bit position drives 0V onto the port pin.  A one in a bit position drives +5V onto the port 

pin.  

• Input voltages are sensed using input registers PINA, PINB, PINC, and PIND.  A zero represents 

sensing a 0V signal.  A one represents sensing a +5V signal.   

• Remember:  in with the PIN register, out with the PORT register.   

Some sensors have open-collector or open-drain signals.   

• This type of signal will not drive the wire to +5V.   Instead, it open-circuits when not at 0V. 

• The solution connects a resistor between the signal and +5V.  The resistor provides the “pull-up” 

or “pull-high” function when the sensor open-circuits.   

• Ohm’s law explains the pull-up function.  Figure 2 diagrams a pull-up resistor on a sensor signal 

connected to a microcontroller port pin.  Modern CMOS microcontroller input pins have no 

current flow.  Therefore, when the sensor releases the signal from 0V, the open-circuit at both 

ends of the signal wire means no current can flow through R.  The voltage loss across resistor R 

is 5-0*R = 5V.  Thus, the resistor has “pulled-up” the signal to +5V.     

 

Figure 2:  Pull-up resistors 



EMBEDDED SYSTEMS TECH NOTE USING SOFTWARE-CONTROLLED PORT PINS 

 

Page 3 of 4 © Dr. Russ Meier, Milwaukee School of Engineering 

 

Built-in pull-up resistors are provided at every port pin of the ATmega32. 

• Pull-up resistors can be turned on or off by software control. 

• Pull-up resistors only need to be used if the sensor signal does not drive to +5V. 

• Pull-up resistors can be turned on for all unconnected port pins resulting in +5V bit reads.   

ATmega32 digital I/O port configuration is summarized in Table 2. 

TABLE 2:  ATmega32 PORT PIN CONFIGURATION 

CONTROL REGISTER BITS PORT PIN BEHAVIOR 

DDR bit PORT bit Direction Pull-up on? 

0 0 Input No 

0 1 Input Yes 

1 0 Output No 

1 1 Output No 

 

ATmega32 assembly language examples: 

• AVR assembly provides many ways to set and clear bits in control registers. 

• These examples illustrate using a do-no-damage approach to control one bit at a time. 

• These examples will be slower and longer than code overwriting all bits simultaneously. 

Configuring output and driving voltage Configuring input and reading voltage 

 
;** configure portb3 as output pin 
;** do no damage to other ddr bits 
 
 in  r16,ddrb 
 ori  r16,0b00001000 
 out  ddrb,r16 
 
;** write +5V onto port pin PB3 
;** do no damage to other pins 
 
 in  r16,portb 
 ori  r16,0b00001000 
 out  portb,r16 
 
;** write +0V onto port pin PB3 
;** do no damage to other pins 
 
 in  r16,portb 
 andi  r16,0b11110111 
 out  portb,r16 
 

 

;** configure portb3 as input pin 
;** turn on pull-up 
 
 in  r16,ddrb 
 andi r16,0b11110111 
 out ddrb,r16 
 in r16,portb 
 ori r16,0b00001000 
 out portb,r16 
 
;** read pin voltages 
 
 in r16,pinb  
 
;** was PB3 zero? 
;** if PB3 = 0 then L1 else L2 
 sbrc r16,3  
 rjmp L2 
L1:    
 
 
  

 



EMBEDDED SYSTEMS TECH NOTE USING SOFTWARE-CONTROLLED PORT PINS 

 

Page 4 of 4 © Dr. Russ Meier, Milwaukee School of Engineering 

 

C programming language examples: 

• C provides many ways to set and clear control register bits. 

• These examples illustrate a do-no-damage approach using bitwise AND and OR logical operators. 

• These examples will be longer and slower than code overwriting all bits simultaneously. 

• These examples are written using the WinAVR gcc installation.  

Configuring output and driving voltage Configuring input and reading voltage 

#include <avr\io.h> 
 
int main(void) 
{ 
 
 /* configure PB3 as output */  
 DDRB = DDRB | 0b00001000; 
 
 /* write PB3=1 then PB3=0 */ 
 PORTB = PORTB | 0b00001000; 
 PORTB = PORTB & 0b11110111; 
 
 /* do other work */ 
 … 
 
 
 return 0; 
} 

#include <avr\io.h> 
#include <inttypes.h> 
 
int main(void) 
{ 
 uint8_t pv; 
 
 /* configure PB3 as input */ 
 /* pull-ups on            */ 
 DDRB = DDRB & 0b11110111; 
 PORTB = PORTB | 0b00001000; 
 
 /* read pin voltages */ 
 pv = PINB; 
 
 /* if-then-else using PB3 */ 
 /* if PB3 = 1 then, else */ 
 if (pv & 0b00001000)  
 { 
  /* do true part */ 
 } 
 else 
 { 
  /* do false part */ 
 } 
 
 /* do other work */ 
 … 
 
 return 0; 
} 

 


