## EMBEDDED SYSTEMS TECH NOTE SPI SERIAL COMMUNICATIONS

## Winter 2008 Milwaukee School of Engineering © Dr. Russ Meier

## **BASICS**

- 1. SPI is an acronym for a serial peripheral interface bus originally specified by Motorola and commonly implemented in modern microcontrollers.
- 2. The SPI is a synchronous, serial communication interface used to transfer 8-bit data values between digital components.
  - a. **Synchronous** means with (syn) + time (chronous). Synchronous communication circuits coordinate data transfer to the rising or falling edge of a clock signal.
  - b. **Asynchronous** means not (a) + with (syn) + time (chronous). Asynchronous communication circuits do not use the edges of a clock signal to coordinate data transfer.
  - c. **Serial** communication circuits send one (1) bit of information per clock period. An n-bit transfer will require n clock cycles.
    - i. The advantage is less wiring expense.
    - ii. The disadvantage is time to transfer.
  - d. **Parallel** communication circuits send n bits of information per clock period. An n-bit transfer will require 1 clock cycle.
    - i. The advantage is time to transfer.
    - ii. The disadvantage is wiring expense.
- 3. SPI transfers occur between two SPI-capable digital circuits.
  - a. Master circuits initiate the SPI data transfers.
  - b. **Slave** circuits respond to master initiated data transfers.
  - c. Embedded microcontroller are usually configured as the master for slave sensors and actuators.
- 4. SPI transfers occur as a 16-bit ring. The 8-bit master data is moved into the slave at the same time that the 8-bit slave data is moved into the master.

## FIRMWARE CONTROL OF THE SPI I/O DEVICE

- 1. SPI input and output signals are multiplexed with general purpose port pins on microcontrollers.
  - a. For example, the SPI signals are multiplexed onto Atmega32 port-b pins.

- b. For example, the SPI signals are multiplexed onto Atmega32 port-d pins.
- 2. SPI control and status signals are mapped to three I/O control registers called **SPCR**, **SPSR**, and **SPDR**. Successful use of the SPI device involves correct initialization of the SPCR, SPSR, and DDRD.
- 3. Master outputs
  - a. **MOSI** = master-out/slave-in = the serial data line for bits moving from the master to the slave.
  - b. **SCK** = SPI clock = the programmable, synchronizing clock signal.
- 4. Master inputs
  - a. **SS** = slave select = a selection signal used by the master to enable/select an SPI device.
  - b. Microcontrollers can be slaves to another SPI device, and thus, the SS signal exists on the Atmega32 and MC68HC11 microcontrollers, for example.
  - c. **MISO** = master-in/slave-out = the serial data line for bits moving from the slave to the master.
- 5. Control signals are memory-mapped into the register call **SPCR**.
  - a. **SPIE** = SPI interrupt enable
  - b. Interrupts are appropriate for some problems but not for others. In the cases where interrupts are not appropriate, polling should be used to check a completion status flag, called SPIF, in the status register.
  - c. **SPE** = SPI enable
    - i. Set this bit to a 1 to enable the SPI.
    - ii. If enabled, the SPI will drive MOSI and SCK in response to data transfer requests.
    - iii. If disabled, the SPI will not drive MOSI and SCK allowing normal port pin functionality.
  - d. **MSTR** = master selection
    - i. Set this bit to 1 to select master mode.
  - e. **CPOL** = clock polarity
    - i. This bit determines the pretransaction value of the SCK signal.
    - ii. Look at the SPCR information page in the microcontroller's reference manual. Note that CPOL = 0 forces SCK low pretransaction while CPOL = 1 forces SCK high pretransaction.
  - f. **CPHA** = clock phasing
  - g. **SPR1:SPR0** = SCK clock frequency control
    - i. The SCK is derived from the master's clock circuits.
    - ii. The SPR1:SPR0 bits select SCK as a divided frequency of the system clock. SCK is always SLOWER than the system clock.
- 6. Status signals are memory-mapped into a register called **SPSR**.
  - a. **SPIF** = SPI complete flag
    - i. This bit is set to 1 by the SPI whenever a data transfer completes.
    - ii. Busy-wait on the SPIF after requesting a transfer if you need polled mode software synchronization.

- 7. The transferred data bytes are memory mapped into a register called **SPDR**.
- 8. You may hear the course instructor or others instructors refer to the SPI registers using words.
  - a. SPCR pronounced SPEAKER.
  - b. SPSR pronounced SPICER
  - c. SPDR pronounced SPEADER.