3)Y[:73 1) BRSNS B [0l USING SOFTWARE-CONTROLLED PORT PINS

Embedded systems are product sub-systems controlled by a special-purpose computer. The computer
provides software-control by using transducers called actuators and sensors.

¢ Sensors are transducers that convert physical energy to electrical energy. In general, sensors
meter the environment by measuring some change in a physical parameter.

* Actuators are transducers that convert electrical energy to physical energy. In general,
actuators change the environment by using electricity to change a physical parameter.

* Microcontrollers are single-chip computers that are the brain of most embedded systems.

* Figure 1is a basic model used to diagram embedded systems that use microcontrollers.

SCC ACTUATOR

MICROCONTROLLER

SCC SENSOR

A

Figure 1. The Basic Embedded System Model
Pins interface sensors and actuators to the microcontroller.

* Ports are named collections of pins for easy programmatic reference.

* Input-only port pins are only used for sensor signals.

* Output-only port pins are only used for actuator signals.

¢ Bidirectional port pins can be used for either sensor or actuator signals.

* Pins can be shared by a number of 1/0 devices to keep the size of the chip small.

1/0 control registers hold binary numbers that determine port pin behavior. Each program will use
different types of control registers based on the system functionality and the 1/0O devices used.

* Configuration control registers configure I/O devices that use port pins. Examples include clock
timing, interrupt masks, and pin edge response.

* Direction control registers control the direction of bidirectional port pins.

* Input registers sample sensor signals on command.

* Output registers control the voltage output to actuator signals.

* Parameter registers hold parameters needed by 1/0 device functions. Example include time
values for timer functions and voltage values for analog comparators,

* Result registers hold results produced by some I/0 devices.

¢ Status registers flag events for software notice.

CELERRGTESEN © Dr. Russ Meier, Milwaukee School of Engineering

3)Y[:73 1) BRSNS B [0l USING SOFTWARE-CONTROLLED PORT PINS

The Atmel ATmega32 8-bit microcontroller has a pin interface summarized in Table 1.

* Discrete digital 1/0 is available on all port pins.

* On-chip I/0 devices share the port pins.

TABLE 1: ATmega32 PORT PINS
PORT NAME | PINS AND DIRECTIONS | SHARED BY THESE 1/O DEVICES
PORTA 8 bidirectional pins Analog-to-digital converter
PORTB 8 bidirectional pins SPI serial, analog comparator, timer, external interrupts
PORTC 8 bidirectional pins Timer, JTAG in-system programming, two-wire serial
PORTD 8 bidirectional pins Timer, external interrupts, UART serial

The Atmel ATmega32 serial communications devices include a standard universal

synchronous/asynchronous receiver transmitter (USART) that is ready for interfacing to RS232 serial

devices. Additionally, the microcontroller provides two other standard serial interfaces: the

synchronous peripheral interface (SPI) and a two-wire interface (TWI). All of these protocols are widely

used in embedded systems. This document focuses on the USART.

A USART is a standardized device that can:

transmit a binary number as a square waveform to a receiver

receive a square waveform and converting the information to a binary number

use a synchronous communications model where a master clock it transmitted to the receiver to
coordinate data bit sampling through time

use an asynchronous communications model where no clock is transmitted to the receiver

use built-in hardware to synchronize to an incoming signal in asynchronous mode

transmit and receive at the same time (full-duplex)

use interrupts to signal transmit or receive complete

An RS232 interface IC is often connected to the digital USART signal to convert the USART OV and 5V
signals to RS232 serial levels used by many peripheral devices and standard personal computers.

RS232 logic 0 is any voltage between 3V and 15V

RS232 logic 1 is any voltage between -3V and -15V

The actual voltage depends on the power supply. Common voltages are +5, and £+12V.

The large voltage swing of RS232 makes it not attractive in low-power design. The result is that
RS232 serial ports have largely disappeared from laptops and handheld devices. Instead, low-
power alternatives such as USB or Firewire.

Research your laboratory board. Does it contain an RS232 interface IC? If so, what is the chip
called?

CELEWAGTESEN © Dr. Russ Meier, Milwaukee School of Engineering

3)Y[:73 1) BRSNS B [0l USING SOFTWARE-CONTROLLED PORT PINS

The ATmega32 USART is controlled through

* UCSRA is mainly a status register where the USART announces the completion of events for
polled interaction

¢ UCSRB is a control register where interrupts are enabled and the data size is set

* UCSRC is a control register where the communications model is set: synchronicity, start/stop
bit control, parity control, and data size. USARTs only communicate correctly if both sides use
the same synchronicity, start/stop bits, parity, baud, and data size. Note that the default value
of this register implements a common model — and thus often engineers will not even program a
new value into UCSRC.

* UDR s the name given to both the transmit register and the receive register. It is a convenience
for the programmer because it allows the programmer to simply think of USART data register
rather than USART transmit register or USART receive register. A read from UDR retrieves the
last received binary number. A write to the UDR places a binary number into the transmit
register and initiates transmission.

* UBRRH and UBRRL are parameter registers that hold the desired baud rate. Baud is the unit for
signal elements per second. The value of the parameter is calculated using the equation:

UBRR = [fosc/(16*BAUD)] -1

where fosc is the system clock frequency and BAUD is the desired baud rate. The calculated
value is truncated (integer division). For example, UBRR should have the number 51 stored in
order to set a 9600 BAUD data rate on an ATmega32 that uses an 8MHz crystal.

Operation of the USART is straightforward regardless of the selected communication model
(synchronous or asynchronous) and the service mode (polled or interrupts). Refer to the ATmega32
data sheets for a thorough discussion of the control registers.

* Initialize the control registers for the desired frame format (start/stop, parity, data size) and
baud rate.

* Turn on the receiver and transmitter using the RXEN and TXEN bits.

* Interrupts can be used to service arrival of data and completion of transmission. Interrupts are
enabled in the control registers using the RXCIE, TXCIE, and UDRIE control bits. However, the
ATMON monitor OS used by MSOE computer engineering students uses USART interrupts to
communicate through the serial cable. Thus, interrupts should not be used when ATMON is
operating in the background. Use polled mode with ATMON. _This does not apply to

biomedical engineering or electrical engineering student laboratory boards.

* Polled mode can be used to monitor the receive complete (RXC) status flag to determine if new
data has arrived.

* Polled mode can be used to monitor the UDR empty (UDRE) status flag to know when a
transmission is complete. This step is vital because a user program cannot place a new number
in the UDR until the last number has been fully transmitted. Remember that 9600 baud is quite
a bit slower than a program looping at 16MHz!

CELERIGTESEN © Dr. Russ Meier, Milwaukee School of Engineering

3)Y[:73 1) BRSNS B [0l USING SOFTWARE-CONTROLLED PORT PINS

* Asynchronous mode requires minimal configuration and operates correctly with the terminal
applications on personal computers.

C Programming Example

// ECHO.C

//

// this program configures asynchronous
// data transfer at 2400 baud

// and echos any received character

// back down to the cable

#include <avr\io.h>

// using defines at the top of the file to

// make a one-stop place to quickly change

// oscillator frequency or BAUD RATE rather

// that hard-coding it in main

//

// let a configuration subroutine in a device
// driver or let main calculate the UBRR value
//

// for most baud rates the equation produces
// and 8-bit value so UBRRH should be zeroed.

#define FOSC 8E6
#define BAUD 24E2

void main (void)

{
// declare auto local variables
char USARTdata = 0;

// configure the baud rate
UBRRH = 0;
UBRRL = (FOSC / 16*BAUD) - 1;

// configure asynchronous, even parity,

// 1 stop bit, 8-bit characters

// careful with UCSRC - you must put a 1 in
// the MSB when writing to the UCSRC

UCSRC = 0b10100011;

// turn on the transmitter and the receiver

// using predefined bit names and OR to make a
// highly readable program (to some people)

// just to illustrate another style

UCSRB = (1 << TXEN) | (1 << RXEN);
// infinite loop: wait for character then retransmit it

while (1)
{

CELENGTESEN © Dr. Russ Meier, Milwaukee School of Engineering

3)Y[:73 1) BRSNS B [0l USING SOFTWARE-CONTROLLED PORT PINS

// check RXC for receive-complete

// this example uses an AND mask where

// a 1 has been shifted into the RXC bit position

// all other bits in the MASK are 0 because 1 is 0b00000001
// and after the shift 010000000

1f (UCSRA & (1<<RXC))

{
// must read the data out of UDR to extract it and clear RXC

USARTdata = UDR;
}

// 1f something has been received send it back

if (USARTdata)

{
// make sure the data register is not transmitting currently
// so that we don’t overwhelm it
if (UCSRA & (1<<UDRE))

{
UDR = USARTdata; // echo back
USARTdata = 0; // clear the local variable so that no character left

}

// note that this example illustrates using if-else but while could also have
// been used if the code is allowed to block the main loop

}

Assembly language programmers should note that the C code given above
reads well if you consider assignment, if-then-else, and while
programmatically and disregard the other parts that may be less clear
if you have not learned C. Note that assembly language programmers
will likely implement the flag checks using sbic or sbis instructions.

CEELERSIGTEEN © Dr. Russ Meier, Milwaukee School of Engineering

