
CE4930	Fall	2015		 Homework	2	 Control	Flow	Techniques	

Branch	Delay	Slots	
	

1. The	ELCC	MIPS	compiler	was	used	to	generate	the	MIPS	assembly	language	code	shown	
below.	The	code	contains	many	examples	of	branch	delay	slots.	Research	and	describe	
the	concept	of	branch	delay	slots	in	scalar	pipelines.	What	is	the	difference	between	a	
branch	delay	slot	filled	with	a	stall	versus	a	usable	instruction	and	which	type	does	this	
code	segment	illustrate?	Do	branch	delay	slots	remove	control	hazards?	Do	branch	
delay	slots	improve	performance?	

main:

 addiu $sp, $sp, -16
 sw $fp, 12($sp)
 move $fp, $sp
 sw $zero, 8($fp)
 addiu $1, $zero, 10
 sw $1, 4($fp)
 sw $zero, 0($fp)
 j $BB0_1
 nop
$BB0_1:
 lw $1, 4($fp)
 lw $2, 0($fp)
 addu $1, $2, $1
 sw $1, 0($fp)
 lw $1, 4($fp)
 addiu $1, $1, -1
 sw $1, 4($fp)
 j $BB0_2
 nop
$BB0_2:
 lw $1, 4($fp)
 bnez $1, $BB0_1
 nop
 j $BB0_4
 nop
$BB0_4:
 lw $2, 0($fp)
 move $sp, $fp
 lw $fp, 12($sp)
 addiu $sp, $sp, 16
 jr $ra
 nop

	
	 	

CE4930	Fall	2015		 Homework	2	 Control	Flow	Techniques	

Branch	Predictors	
	

2. Consider	a	MIPS	processor	design	that	uses	a	four-state	branch	predictor	with	states	
strongly	not	taken	(SN),	weakly	not	taken	(WN),	weakly	taken	(WT),	and	strongly	taken	
(ST).	The	machine	resets	into	state	SN	and	moves	progressively	toward	ST	with	each	
taken	branch.	Similarly,	the	machine	moves	in	the	reverse	direction	toward	SNT	with	
each	non-taken	branch.	The	machine	saturates	in	SN	and	ST	as	long	as	N	and	T	branch	
results	respectively	continue	to	calculate	in	the	execution	circuit.	The	name	of	the	state	
is	the	predicted	PC	multiplexer	path	(NT	or	T).		
	

a. Draw	the	state	machine.		
b. Determine	the	state	of	the	prediction	state	machine	if	the	actual	branch	

behavior	as	calculated	by	the	branch	execution	circuit	after	reset	is	
TTTTT_N_TTTTTTT_N_TT_NNNN_TTT_N_T_N_TT_NN_TTT_N_T_N_T	

c. The	prediction	result	of	the	machine	is	used	to	select	either	the	PC+4	or	branch	
target	address	(which	is	calculated	in	the	IF	state	by	moving	sign-extension	of	the	
imm32	and	the	left		

3. Consider	a	MIPS	processor	that	uses	the	standard	2-bit	saturation	counter	described	in	
problem	2.	Suppose	the	branch	penalty	to	refill	the	pipeline	with	useful	instructions	is	2	
cycles	(on	the	clock	tick,	IF/ID	bubbles,	new	PC	moves	correct	instruction	into	IF,	on	the	
next	clock	tick	the	correct	instruction	moves	to	decode	giving	useful	information	in	the	
circuits	again).	Assume	the	predictor	has	saturated	into	the	ST	state.	How	many	penalty	
cycles	get	inserted	when	the	actual	branch	behavior	as	calculated	by	the	branch	
execution	circuit	is	TTTTTT_NNN_TT_NN_TTTTTTT_NN_T	
	

	 	

CE4930	Fall	2015		 Homework	2	 Control	Flow	Techniques	

Predicated	Instructions	
	
Conditional,	or	predicated	instructions,	are	instructions	that	execute	only	if	a	condition	is	met.	
Many	instruction	sets	include	basic	predicated	instructions	to	handle	hazards	that	arise	because	
of	very	common	programming	structures.	For	example,	the	code	segment:		
	
if	(A	==	B)	then		
{		
		X	=	12;		
}	
else	
{	
	X	=	Z;		
	Y	=	J;		
}		
	
is	a	very	common	programming	structure	in	C.	The	if-then-else	requires	branch	statements	in	
the	MIPS	assembly	language	and	introduces	control	hazards	to	the	pipeline	flight-plan.		
Predicated	instructions	are	one	compiler-time	technique	to	remove	branch	hazards.	Common	
programming	structures	are	identified	by	the	compiler	at	compile	time	and	replaced	with	
predicated	instructions	that	execute	only	if	their	condition	is	true.	In	the	examples	above,	the	
addition	of	two	predicated	move	(also	called	a	conditional	move)	instructions	to	the	MIPS	
instruction	set	could	eliminate	all	branches	from	the	flight	plan.	This	new	MIPS	assembly	
language	instruction	might	look	like	this:		
	

FIELDS ASSEMBLY EXAMPLE BEHAVIOR
cmovz rd,rs,rt cmovz $s0,$s5,$t3 R[s0] = R[s5] if $t3 = 0
cmovnz rd,rs,rt cmovnz $s0, $s5, $t3 R[s0] = R[s5] if $t3 != 0

	 	
Of	course,	the	value	in	register	t3	is	the	conditional	evaluation	that	controls	the	if-then-else	
statement	and	must	be	created	by	instructions	executing	before	the	conditional	move.	In	this	
case,	a	subtraction	of	A	and	B	would	place	a	result	in	$t3	before	entry	into	the	if-then-else.		
	

4. Translate	the	C	program	to	the	standard	MIPS	assembly	language	used	in	CE2930.	Do	
not	include	the	new	predicated	instructions.		Choose	appropriate	saved	registers	($s0-
$s7)	for	variable	names	and	temporary	registers	($t0-$t9)	for	any	intermediate	
calculation.		

5. Rework	problem	4	using	the	new	predicated	instructions.		
6. Compare	the	performance	of	the	code	segments	in	problems	4	and	5	for	both	of	these	

cases:	A	=	B	and	A	!=	B.		
	
DUE	DATE:	These	problems	are	due	on	printed	paper	by	5	p.m.	on	Friday	of	week	5.		

