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EE-3221 LABORATORY 

Quantization Error 
 
Overview 
In this lab exercise you will investigate sampled audio signals and then explore the effects of 
quantization error through MATLAB simulation.  
 
Sampled Audio in MATLAB  
A vector of samples in MATLAB can be played as an audio signal using: 
 
sound(x, fs, BITS) 
 
where x is the vector (or sequence) of samples, fs is the sampling frequency of the sequence, and BITS is 
the number of bits used to represent the audio signal in the digital-to-analog converter (DAC) of your 
sound card. If fs and BITS are not specified, they default to 8192 samples/second and 16 bits/sample. 
 
Sinusoids 
Run MATLAB and create an index vector that will correspond to 2 seconds of time. 
 
fs = 8192;  % fs = 8192 samples/second, default sample rate 
Ts = <?>  % sample period Ts = 1/fs seconds/sample & is inverse of fs 
t_max = 4;  % max time is 4 seconds 
N = t_max/<?> % determine the number of samples that corresponds to 4 
seconds of a sampled sequence (care must be taken that N is an integer; here 
the values are arranged so it will be, but try help round and doc ceil for 
common ways to convert floating point numbers to integer values) 
n = 0:1:(N-1); % maximum value is N-1 since we start at 0 
% alternatively we can define N = fs*t_max 
 
Now we create the sine wave signal. Let’s create a 440 Hz (concert pitch “A”) tone. We take the desired 
frequency and multiply it by 2π/fs or 2π∙Ts, which are equivalent. Note that Ts*n is the sampled time in 
seconds. 
 
f_A = 440   % concert pitch A is 440 Hz 
x1 = sin(2*pi*f_A*Ts*n); 
 
We can listen to the signal through the computer’s sound card using sound(x, fs). Always turn 
down the volume on your computer before playing a sound. The full scale volume is very loud! 
 
sound(x1, fs) 
 
sound(0.1*x1, fs) 
 
The second call attempts to scale the output voltage by 0.1. We would expect this to result in 
20×log10(0.1) = -20 dB power gain, which would clearly give an audible difference. This rests on a few 
assumptions, the key one being that the sound card driver isn’t one that automatically increases the 
gain for quiet sounds in an attempt to be helpful. 
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Next create a sine wave signal that represents an 880 Hz tone. 
 
x2 = <?> 
 

1. What is the expression used to find the sequence vector for x2? 
 
Listen to x2: 
 
sound(x2, fs) 
 

2. Describe the differences between the two sounds. What causes the difference? 
 
Musical Chords 
In western music, a chord is a combination of tones that are related by ratios of the fundamental tone. 
For example, an A-major chord consists of an A note at 440 Hz, a C# note at about 1.26*440 Hz, and an E 
note at about 1.5*440 Hz. Those who are musically inclined may know that the exact frequency 
multipliers for the 3 components are 0, 4, and 7 semitones above the root, which can be computed in 
MATLAB with 2.^([0 4 7]/12) 
 
Let’s build the tones for the notes that make up an A-major chord. 
 
x1 = sin(         440*2*pi/fs*n); 
x2 = sin(2^(4/12)*440*2*pi/fs*n); % Approx. 1.26 of fundamental 
x3 = sin(2^(7/12)*440*2*pi/fs*n); % Approx. 1.5  of fundamental 
xs = [x1 x2 x3]; % explain what this does 
sound(xs, fs) 
xc = mean([x1; x2; x3]); % explain what this does 
sound(xc, fs) 
 

3. Explain what [x1 x2 x3] and mean([x1; x2; x3]) do. Hint: Examine the sizes of the inputs and 
outputs. 

4. Suppose you were to examine the frequency spectrum of signals xs and xc (e.g., using a spectrum 
analyzer). Describe the ways in which the spectrum of xs and xc are similar. Describe how they 
differ.  

.wav Audio Files 
Download the file plumclip.wav from https://faculty-web.msoe.edu/prust/EE3221 . 
To find MATLAB’s default folder on your system, start MATLAB and enter pwd (“print working 
directory”). This default folder is a convenient place to save the WAV file. You can change MATLAB’s 
current folder at the top of the command window or with the cd (“change directory”) command. To 
import the file into a vector, type: 
 
[original_clip, fs] = audioread('plumclip.wav'); 
 
This .wav file has a sampling rate of 44100 Hz with 16 bits per sample. These are standard industry 
specifications for CD quality audio. Listen to the clip: 
 
sound(original_clip, fs) 
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Low Resolution Samples: The Sound of Quantization Noise and Signal to Noise Ratio (SNR) 
The original .wav file used 16 bits to represent the amplitude of each sample. This represents a 
resolution of the amplitude equal to 216 = 65,536 different levels. To hear the effect of the integer 
approximations used in quantization, let’s reduce the resolution to 6 bits per sample. 
 

5. How many possible amplitude levels are possible when 6 bits are used to quantize the signal? 

 
To obtain the integer values present in the original .wav file, we could rescale the sound vector 
original_clip, but it is easier to read it directly: 
 
integer_original_clip = double(audioread('plumclip.wav', 'native')); 
 
double() causes the signed integers, which range from -32,768 to 32,767, to be stored in MATLAB’s 
default double-precision floating point data type, which makes them easy to work with. Note that these 
integers are small enough that they can be stored as doubles with no loss of precision. We can check 
that these integers when divided by 215 are exactly equal to the scaled values loaded earlier by 
calculating the error between them: 
 
norm(integer_original_clip/pow2(15)-original_clip) 
 
Now, reduce the resolution to 6 bits by dividing by 2^(16-6) and using round() to round the results of the 
sequence values. Remember, our original clip has 16 bits of resolution. Dividing a binary number by 2 
discards the least significant bit and dividing by 2 ten times will discard the lowest 10 bits. This leaves 
only the 6 most significant bits out of the original 16 bits. 
 
integer_lowres_clip = round(integer_original_clip/pow2(10)); %discard 10 bits 
integer_lowres_clip = min(integer_lowres_clip,pow2(5)-1); 
 
The last line limits the output to a maximum of 31; replacing any out-of-range values of 32 with 31. 
Now, each sample ranges from -32 to 31 since we are down to 6 bits of resolution. Note that MATLAB 
uses doubles to store the integer results in this case; MATLAB also supports true integer data types, but 
they generally aren’t used unless utmost efficiency is required. Scale and offset the 6-bit integer vector 
back to the standard range of -1 to 1 for playing in MATLAB and listen to the result. Note that the 
maximum value isn’t quite 1, but 31/32, approaching it closely. 
 
lowres_clip = integer_lowres_clip/pow2(5); 
sound(lowres_clip, fs); % make sure you have the correct fs here. 
 

6. Describe what you hear. What might be causing this? 
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Let’s create a function that will let us hear what the clip will sound like with different resolutions ranging 
all the way down to 1 bit. Here’s the function: 
 
function xq = ChangeBitRes(x, Nbits) 
% x - original clip in the range -1 to nearly 1, [-1,1) 
% Nbits - number of bits in output 
L = 2^Nbits; % number of levels 
xq_int = floor((x+1) * (L/2)) - L/2; % quantization level, details below 
% The steps are: 
%   +1: shift to [0,2) 
%   *(L/2): shift to [0,L), still floating point 
%   floor: for non-negative, discard fractional part: [0,L) as integer 
%   -L/2: shift to signed range [L/2,L/2-1] 
% For example, if Nbits is 6, there are 64 levels in the range [-32,31]. 
% If the user accidentally inputs a value of exactly +1, it will get 
% quantized to, e.g., 32, which doesn't fit in a 6-bit signed integer. 
  
% Now, convert back to values in [-1,1) 
xq = (xq_int + 1/2) / (L/2); % quantized value (+1/2 rounds to nearest) 
 
 
Save the function and experiment with the song using different resolutions. For example, try: 
 
sound(ChangeBitRes(original_clip,12), fs) % 12 bits used to quantize amplitude 
sound(ChangeBitRes(original_clip(1:fs*5), 6), fs) % limit to first 5 seconds 
sound(ChangeBitRes(original_clip, 4), fs) 
sound(ChangeBitRes(original_clip, 1), fs) 
 
Rounding and quantization adds error to each sample. The amount of error in each sample does not 
follow any particular pattern, so it sounds like a shhhh-ing or static sound that we call white noise. 
 

 
7. Listen to the audio clip using 1 bit of resolution.  IMPORTANT:  Be sure to turn down your laptop 

volume, as the noise will be quite loud.  You should be able to recognize the song.  Explain why 
the song is still recognizable despite the resolution being just 1 bit.  
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Quantization Error and SQNR 
As observed in the previous exercise, quantization of a sampled signal results in errors between the 
original (unquantized) amplitudes and the quantized amplitudes. This difference is referred to as 
quantization error and is often modelled as a noise that is added to the original signal. The ratio of the 
signal power to the quantization noise power is known as the signal-to-quantization-noise ratio, or 
SQNR.  
 

1010 log x

n

PSQNR
P

=   

 

xP = signal power 

nP = quantization noise power 
 

In this portion of the exercise, we will carefully simulate the quantization process, examine 
characteristics of the quantization noise, and compare measured SQNR to theoretical predictions. 
 
A well-known result in the DSP community is that SQNR increases by 6.02 dB for each additional bit used 
in the quantizer. The exact SQNR for a given signal depends on various factors, including the statistics of 
the signal itself. For example, the SQNR of a sinusoidal signal can be shown (under a set of assumptions) 
to be 
 

6.02 1.76SQNR b= +  dB 
 
where b is the number of bits used in the quantizer. For example, the SQNR of a sinusoid sampled using 
a 14-bit quantizer is, in theory, 6.02(14)+1.76 dB = 86.04 dB. Since 86.04 dB corresponds to 4.02E8, the 
signal power in the quantized signal is 400 million times larger than the quantization noise power! 
 
 
Let’s now simulate a quantizer in MATLAB. We begin by generating samples of a sinusoid: 
 
fs = 1000; 
Ts = 1/fs; 
t = 0:Ts:1; 
x = sin(2*pi*4*t); % 4 Hz sinusoid 
 
By default, MATLAB uses “double” precision (according to IEEE Standard 754) in calculating these 
sample points, which utilizes a 64-bit floating-point representation. Suffice to say, the representation is 
extremely accurate. 
 
We now create a 3-bit quantized version of the sinusoid, paying careful attention to placement of the 
quantization levels. 
 
xq = ChangeBitRes(x,3); 
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We can plot the original signal x and the quantized signal xq with the following: 
 
figure 
plot(t,x,t,xq) 
xlabel('t') 
legend('x','xq') 
 
Carefully inspect this plot, paying special attention to the placement of the quantization levels. Note 
that values of x are “rounded” to the nearest quantization level. This particular quantizer is known as a 
“midrise” quantizer. 
 
The quantization error can be calculated as 
 
e = x-xq; 
 

8. Create a plot showing x, xq, and e on the same time axis (i.e., one figure showing all three 
signals). Label the time axis and include a legend. Include this plot in your submittal. What is the 
range of e, and how does this range correspond to the step size of the quantizer? 

We now calculate the simulated SQNR as 
 
S = mean(xq.^2); % signal power is mean square value 
Q = mean(e.^2); % noise power is mean square value 
SQNR = 10*log10(S/Q); % in dB 
 
 
You should find the SQNR to be 18.7 dB. The theoretical SQNR for a 3-bit quantizer is 19.8 dB. 
 
 

9. Repeat this simulation for each of the quantizers listed in the table below. Complete the table 
and include in your submittal.  Interpret the results. 
 

Number of bits Simulated SQNR (dB) Theoretical SQNR (dB) 

2   

4   

8   

12   

16   
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A modified version of the quantizer can be simulated by replacing the previous quantization function 
with one that truncates (i.e., rounds down) instead of rounding to the nearest level. 
 
function xq = ChangeBitRes_Truncate(x, Nbits) 
% x - original clip in the range -1 to nearly 1, [-1,1) 
% Nbits - number of bits in output 
L = 2^Nbits; % number of levels 
xq_int = floor((x+1) * (L/2)) - L/2; % quantization level, details below 
% The steps are: 
%   +1: shift to [0,2) 
%   *(L/2): shift to [0,L), still floating point 
%   floor: for non-negative, discard fractional part: [0,L) as integer 
%   -L/2: shift to signed range [L/2,L/2-1] 
% For example, if Nbits is 6, there are 64 levels in the range [-32,31]. 
% If the user accidentally inputs a value of exactly +1, it will get 
% quantized to, e.g., 32, which doesn't fit in a 6-bit signed integer. 
  
% Now, convert back to values in [-1,1) 
xq = xq_int / (L/2); % quantized value (always rounds down) 
 
Notice the line that computes xq differs from the previous quantizer.  
 

10. Create a plot showing x, xq, and e on the same time axis (i.e., one figure showing all three 
signals) for this 3-bit “truncating” quantizer. Label the time axis and include a legend. Include 
this plot in your submittal. What is the range of e, and how does this range correspond to the 
step size of the quantizer? 

11. Simulate this “truncating” quantizer using 8 bits. What is the resulting SQNR? How does this 
SQNR compare to the SQNR for the 8 bit “rounding” quantizer that was previously simulated? 
Explain the results. (Hint: Use the plot you generated in the previous question to support your 
explanation.) 

 


