
USING THE ARDUINO UNO

WITH ECLIPSE

Milwaukee School of Engineering

Created: June 2011

Last Update: 13 September 2013

Author: Cory J. Prust, Ph.D.

ECLIPSE OVERVIEW

Eclipse is an open-source software development

system

Can be used to program the Arduino UNO board

in C or C++

Allows greater access to and control of

microcontroller subsystems

BEFORE CONTINUING…

The Arduino UNO drivers must be installed!

 For details, see the Arduino Installation tutorial:

 https://faculty-web.msoe.edu/prust/arduino

Determine which COM port is assigned to the Arduino

UNO board:

 In Windows, click on the Start Menu and open the Control Panel

 Choose System and Security and then, under System, open the

Device Manager

 Under Ports (COM & LPT) locate “Arduino UNO”

IMPORTANT:
Note the “COM” port

https://faculty-web.msoe.edu/prust/arduino
https://faculty-web.msoe.edu/prust/arduino
https://faculty-web.msoe.edu/prust/arduino

OVERVIEW

 Step 1: Installing WinAVR

 Step 2: “Installing” Eclipse

 Step 3: Using Eclipse

 Step 4: Building a Project and Testing the UNO

 Step 5: Creating a New Project

 Step 6: Using the MSOE Support Functions

INSTALLING WINAVR

 WinAVR contains the AVR toolchain (plus many other useful tools):

 avr-gcc: compiles our C programs

 avr-dude: programs the Arduino UNO

 Eclipse will use WinAVR automatically – we just need to install it!

 Download the latest release of WinAVR from

 https://faculty-web.msoe.edu/prust/arduino

 Run the installation using default settings.

IMPORTANT: You must use the default installation directory!

C:\WinAVR-20100110

https://faculty-web.msoe.edu/prust/arduino
https://faculty-web.msoe.edu/prust/arduino
https://faculty-web.msoe.edu/prust/arduino

“INSTALLING” ECLIPSE

Download the Eclipse archive (.zip file) from

 https://faculty-web.msoe.edu/prust/arduino

Extract the .zip file to your D:\ drive

After unzipping, you should see two folders:

 D:\eclipse

 D:\ARDUINOworkspace

(continued…)

https://faculty-web.msoe.edu/~prust/arduino
https://faculty-web.msoe.edu/~prust/arduino
https://faculty-web.msoe.edu/~prust/arduino

“INSTALLING” ECLIPSE

 The executable is located in D:\eclipse. Double-click to start Eclipse.

 For quicker access to Eclipse, create a shortcut to the executable.

D:\eclipse

executable

USING ECLIPSE

You will see the following screen - it defines

“D:\ARDUINOworkspace” as the location for your Arduino

projects

 Select “OK”

You will then see the Eclipse workbench

(continued…)

USING ECLIPSE

Project Explorer

All projects in the current workspace

(ARDUINOworkspace) are shown here.

Only the selected project is “active”.

“testArduinoUNO” is a sample project.

Console Window

Messages from the compiler, linker, and

programmer will be displayed here.

Build Icon

Pressing this button results in a “build” of

the active project. The result of a

successful build is a “.hex” file which can

be uploaded onto the UNO board.

Upload Icon

Pressing this button sends the program

(in the form of a “.hex” file) to the

ATmega328p on the UNO board.

Problems Window

Displays warning and error messages

that result from the build process.

BUILDING A PROJECT

 The project “testArduinoUNO” has been included as a sample project

 Expand the project in the Project Explorer. You should see the following:

 “testArduinoUNO.c” is the source code. Double-click to open and

examine the code.

(continued…)

BUILDING A PROJECT

 To build the project, click the build icon

 The build may take a minute or two

 Information regarding the build process is shown in the console window.

 The build process generates several files, which can be seen in the Project

Explorer window:

.hex file used to program the

ATmega328p microcontroller

TESTING THE UNO

 Eclipse must know which COM port the UNO board is connected to.

 Select “Project” then “Properties”

 Expand the “AVR” arrow and select “AVRDude”

 The “Programmer configuration” should read “ArduinoUNO”. Click the “Edit” button

 Change the “Override default port (-P)” setting to the correct COM port, and

select “OK” (twice)

 For example, the correct setting for COM5 would be: //./COM5

TESTING THE UNO

 Connect your Arduino UNO board to your laptop

 Press the upload icon

 Information regarding the upload process is shown in the console

window.

 A successful upload results in the following message:

 The yellow LED (marked “L”) should be blinking!

CREATING A NEW PROJECT

 You will need to create new projects in Eclipse, for example, when you
begin a new laboratory assignment.

 IMPORTANT: Keep all of your projects in “ARDUINOworkspace”!

 Select “File – New – C Project”

 Give the project a descriptive name

 Do not use spaces or any special characters

“my First Project” BAD

“myFirstProject” GOOD

 Project type: “Empty Project”

 Toolchain: “AVR-GCC Toolchain”

 Select “Next”

(continued…)

CREATING A NEW PROJECT

 Click the “Advanced Settings” button

 Expand the “AVR” arrow and select “AVRDude”

 Under “Programmer configuration”, use the drop-down box to select
“ArduinoUNO”

 Expand the “C/C++ Build” arrow and select “Settings”

 Under the “Tool Settings” tab, check the “Generate HEX file for FLASH
memory” option

 Click “OK”, and “Next”

(continued…)

CREATING A NEW PROJECT

 Set the MCU Type to “ATmega328p”

 Set the MCU Frequency (Hz) to “16000000”

 The Arduino UNO board has a 16MHz crystal

which provides the CPU clock to the ATmega328p

 Choose “Finish”

 You will see your new project in the Project

Explorer

(continued…)

Note: The selected

project is “active”

CREATING A NEW PROJECT

 We now need to add a source file (.c)

 From within the Project Explorer, right-click on your project and select
“New – Source File”

 Give your source file a descriptive name

 e.g., “myFirstProject.c”

 IMPORTANT: the file name must end with “.c”

 Choose “Finish”

CREATING A NEW PROJECT

The source file is now part of your project and will be used

during the build process.

As a test, copy/paste the source code from the

“testArduinoUNO” project into your new project:

 Experiment with the delay function to alter the blink rate and pattern

 Build the new project

 Upload the .hex file to the UNO board

IMPORTANT:

Only the “active” project will be built!

Make a project “active” by selecting it in Project Explorer

EDIT CODE

in C Source File

BUILD

Executable Hex File

UPLOAD

Hex File to UNO

TEST and DEBUG

CREATE NEW PROJECT

CONFIGURE SETTINGS

ADD “C” Source File

SUMMARY: USING ECLIPSE

USING THE “MSOE” SUPPORT FUNCTIONS

 Within “D:\ARDUINOworkspace” is a directory named “MSOE”

containing a variety of functions:

 delay.c – time delay functions

 lcd.c – LCD control functions

 bit.c – general purpose functions

 These functions can easily be used within Eclipse:

 Must tell Eclipse their location on the filesystem

 Must “include” the files in our source code

 Must properly “call” the functions within our program

 Next, we will modify our program to allow precise timing of the “blink”

(continued…)

USING THE “MSOE” SUPPORT FUNCTIONS

 Step 1: Tell Eclipse the location of the MSOE support functions

 Select “Project” then “Properties”

 Expand the “C/C++ General” arrow and select “Paths and Symbols”

 In the “Includes” tab, “Add” an Include directory “D:\ARDUINOworkspace”

 Select “OK”

 You may be prompted to “rebuild”. Choose “Yes”.

(continued…)

USING THE “MSOE” SUPPORT FUNCTIONS

 Step 2: Include the MSOE support functions in the source code

 We will use the “delay_ms()” function to control the timing

 The function source code must be “included” within our program

 The function itself is contained in a file called “delay.c”

 Add the following line of code:

(continued…)

USING THE “MSOE” SUPPORT FUNCTIONS

 Step 3: Call the function within our program

 The “delay_ms()” function accepts an unsigned 16-bit integer parameter

that controls the time delay (in milliseconds)

 Make the following modifications:

(continued…)

delay_ms(500);

Produces a 500 millisecond delay

USING THE “MSOE” SUPPORT FUNCTIONS

 Save your program and build it!

The “Problems” tab will alert you to any errors or warnings
that resulted from the build process:

 “0 items” means a successful build!

Upload the .hex file to the UNO board

 Experiment with the “delay_ms()” function to alter the blink rate and
pattern

ONE FINAL NOTE: THE AVR MATH LIBRARY

 When a program is doing lots of calculations (e.g., floating point, calls to functions
such as “sqrt”, “cos”, etc) it is a good idea to use the AVR Math Library

 The AVR Math Library contains code which has been optimized for use on the
AVR microcontrollers – so things run fast and efficiently!

 To use it:

 Select “Project” then “Properties”

 Expand the “C/C++ General” arrow and select “Paths and Symbols”

 In the “Libraries” tab, “Add” an entry named “m”

 Select “OK”

CONGRATULATIONS!!!

You now have a fully functioning Arduino UNO

development system in Eclipse!

Programming the Arduino board in C unlocks the full

functionality of the ATmega328p microcontroller!

Writing software in C also provides greater flexibility:

 For example, your C programs could easily be “built” for a different microcontroller!

