USING THE ARDUINO UNO
WITH ECLIPSE

Milwaukee School of Engineering

Created: June 201 |
Last Update: |3 September 2013

Author: Cory |J. Prust, Ph.D.

ECLIPSE OVERVIEW

Eclipse is an open-source software development
system

Can be used to program the Arduino UNO board
in C or C++

Allows greater access to and control of
microcontroller subsystems

BEFORE CONTINUING...

The Arduino UNO drivers must be installed!

For details, see the Arduino Installation tutorial:

Determine which COM port is assigned to the Arduino
UNO board:
In Windows, click on the Start Menu and open the Control Panel

Choose System and Security and then, under System, open the
Device Manager

Under Ports (COM & LPT) locate “Arduino UNO”

"‘5" Device Manager

477 Ports (COM & LPT)

"5 Arduino UNO (COMS) |
- .73 ECP Printer Port (LPT1) IMPORTANT:
> B Processors Note the “COM” port

—

https://faculty-web.msoe.edu/prust/arduino
https://faculty-web.msoe.edu/prust/arduino
https://faculty-web.msoe.edu/prust/arduino

OVERVIEW

Step 1: Installing WinAVR

Step 2: “Installing” Eclipse

Step 3: Using Eclipse

Step 4: Building a Project and Testing the UNO
Step 5: Creating a New Project

Step 6: Using the MSOE Support Functions

INSTALLING WINAVR

WinAVR contains the AVR toolchain (plus many other useful tools):
avr-gcc: compiles our C programs

avr-dude: programs the Arduino UNO

Eclipse will use WinAVR automatically — we just need to install it!
Download the latest release of WinAVR from

Run the installation using default settings.

IMPORTANT: You must use the default installation directory!
C:\WinAVR-20100110

https://faculty-web.msoe.edu/prust/arduino
https://faculty-web.msoe.edu/prust/arduino
https://faculty-web.msoe.edu/prust/arduino

“INSTALLING” ECLIPSE

Download the Eclipse archive (.zip file) from

Extract the .zip file to your D:\ drive

After unzipping, you should see two folders:

D:\eclipse
D:\ARDUINOworkspace

(continued...)

https://faculty-web.msoe.edu/~prust/arduino
https://faculty-web.msoe.edu/~prust/arduino
https://faculty-web.msoe.edu/~prust/arduino

“INSTALLING” ECLIPSE

The executable is located in D:\eclipse. Double-click to start Eclipse.

Organize = Open Burn MNew folder

¥ Favorites Mame : Date modified
Desktop . coenfiguration 11 2:01 PM
4 Downloads . dropins
2| Recent Places | features

. p2

- Libraries . plugins
|=_E] Documents . readme
J'? Music
[E5] Pictures = artifacts
B videos | = eclipse

2 | eclipse

.eclipseproduct

|

Ll Computer [m=1 eclipsec
&, (C) Local Disk 5] epl-v10

a (D) Local Disk | notice

For quicker access to Eclipse, create a shortcut to the executable.

USING ECLIPSE

You will see the following screen - it defines
“D:\ARDUINOworkspace” as the location for your Arduino
projects

Select “OK” il et

e for this sessi

Workspace: p:_ARDUINch\rkspa ce

[] Use this as the default and de not ask again

You will then see the Eclipse workbench

(continued...)

USING ECLIPSE o
Pressing this button results in a “build” of

the active project. The result of a
successful build is a “.hex” file which can
=== he uploaded onto the UNO board.

[} Project Explorer 2

o =5 testArduinoUNG) An outline is not available.

Project Explorer
All projects in the current workspace
(ARDUINOworkspace) are shown here.
Only the selected project is “active”.

Upload Icon
Pressing this button sends the program
(in the form of a “.hex” file) to the

ATmega328p on the UNO board.

“testArduinoUNQO” is a sample project.

E__ Problems J_—‘, Tasks | B Console 52 = Properties | 3 AVR Device Explorer| I AVR Supported MCUs

oles to display at this time.

Console Window
Messages from the compiler, linker, and
programmer will be displayed here.

Problems Window
Displays warning and error messages
= that result from the build process.

\

S—

BUILDING A PROJECT

The project “testArduinoUNO” has been included as a sample project

Expand the project in the Project Explorer. You should see the following:

4 == testArduinoUMO|

[» = Debug
b€ testArduinoUNQ.c

“testArduinoUNO.c” is the source code. Double-click to open and
examine the code.

(continued...)

BUILDING A PROJECT

To build the project, click the build icon

The build may take a minute or two

Information regarding the build process is shown in the console window.

cader)

vt (0.0% Full)
+ .noinit)

Finished building: sizedummy

The build process generates several files, which can be seen in the Project
Explorer window:

r|_‘| Project Explorer ©

a2 testArduinoUND|
[b Binaries
> |_|_|J Includes
£l

-hex file used to program the
ATmega328p microcontroller

stArduineUNC.d
2| testArduineUNO.hex
=] testArduinoUMNO.Iss

= testArduinoUMNC.map
b [testArduinoUNO.c

TESTING THE UNO

Eclipse must know which COM port the UNO board is connected to.

Select “Project” then “Properties”
Expand the “AVR” arrow and select “AVRDude”

The “Programmer configuration” should read “ArduinoUNO”. Click the “Edit” button

type

[» Resource

4 AVR
| AVRDude |
Target Hardware

Builders

| Task Repository
| WikiText

Change the “Override default port (-P)” setting to the correct COM port, and
select “OK” (twice)

For example, the correct setting for COMS5 would be: //./COM5

Futurlec.com programming cable,

lasoen Kyle's pAVR Serial Programmer

Lancos SI-Prog «<http:/Swww. lancos.com/sipregsch. hizg
\

Override default port (-P) SESCOME

Override default baudrate (-b) 115200 -

TESTING THE UNO

Connect your Arduino UNO board to your laptop

Press the upload icon [

Information regarding the upload process is shown in the console
window.

E.L Problems ~;_—.| Tasks | Bl Console []-E ProPErtir:s-.' 3 AVRT

A successful upload results in the following message:
Reading | #3338 88ia 8483834048998 9844
-; of flash wverified
avrdude done. Thank you.

avrdude finished

The yellow LED (marked “L”) should be blinking!

CREATING A NEW PROJECT

You will need to create new projects in Eclipse, for example, when you
begin a new laboratory assignment.

IMPORTANT: Keep all of your projects in “ARDUINOworkspace”!

Select “File — New — C Project”

Give the project a descriptive name (I ——

Project name: myFirstProject

Do not use spaces or any special characters

Jcation: | DAARDUINOworkspace\myFirstPraject

“my First Project” i Tooichains

= AR Croms Target Application | IAVR-GCC Toolchaint
“myFirstProject” & A e Tt
Project type: “Empty Project”
Toolchain: “AVR-GCC Toolchain”

Select “Next”

Show project types and toclchains enly if they are supported on the platform

(continued...)

CREATING A NEW PROJECT

Click the “Advanced Settings” button
Expand the “AVR” arrow and select “AVRDude”

Under “Programmer configuration”, use the drop-down box to select
“ArduinoUNQO”

Expand the “C/C++ Build” arrow and select “Settings”

Under the “Tool Settings” tab, check the “Generate HEX file for FLASH
memory opt|on Buider

C/C++ Build B Tool Settings % Build Steps Build Artifact D Binary Parsers W
Build Variables
Discovery Options Additional Tools in Toolchain :
Environment AVR Assembler
Logging enel erate Exte
. “OK” d “N " Settings) [] Print Size
C I IC k ’ an eXt Tool Chain Editor DEbUQg'”Q [7] AVRDude

C/C++ General Compiler

(continued...)

CREATING A NEW PROJECT

Set the MCU Type to “ATmega328p”

AVR Target Hardware Froperties

Define the AVR target properties

Set the MCU Frequency (Hz) to “16000000”

The Arduino UNO board has a |6MHz crystal MCU Type: ,
which provides the CPU clock to the ATmega328p JIRYallz i et o mE i,

Choose “Finish”

You will see your new project in the Project

EX P I ol E_‘l Project Explorer []_

4 |[=% myFirstProject|
b gl Includes .

4 S testArduinoUNO Note: The selected
> 4 Binaries project is “active”
I [al Includes
[» = Debug

[;=- [testArduinoUMO.c (Continued - .)

CREATING A NEW PROJECT

We now need to add a source file (.c)

From within the Project Explorer, right-click on your project and select
“New — Source File”

Give your source file a descriptive name

e.g., “myFirstProject.c”
IMPORTANT: the file name must end with “.c”

Source File

Create a new source file,

Choose (1% Fi nish” Source folder myFirstProject

Source file: myFirstProject.c

Template:

CREATING A NEW PROJECT

The source file is now part of your project and will be used
during the build process.

As a test, copy/paste the source code from the
“testArduinoUNQO” project into your new project:
Experiment with the delay function to alter the blink rate and pattern

Build the new project

IMPORTANT:

Only the “active” project will be built!
Make a project “active” by selecting it in Project Explorer

Upload the .hex file to the UNO board

SUMMARY: USING ECLIPSE

CREATE NEW PROJECT

4

CONFIGURE SETTINGS

EDIT CODE

in C Source File

TEST and DEBUG

A

UPLOAD

\Hex File to UNO

USING THE “MSOE” SUPPORT FUNCTIONS

Within “D:\ARDUINOworkspace” is a directory named “MSOE”
containing a variety of functions:

delay.c — time delay functions
lcd.c — LCD control functions

bit.c — general purpose functions

These functions can easily be used within Eclipse:
Must tell Eclipse their location on the filesystem
Must “include” the files in our source code

Must properly “call” the functions within our program

Next, we will modify our program to allow precise timing of the “blink”

(continued...)

USING THE “MSOE” SUPPORT FUNCTIONS

Step |: Tell Eclipse the location of the MSOE support functions
Select “Project” then “Properties”

Expand the “C/C++ General” arrow and select “Paths and Symbols”
In the “Includes” tab,“Add” an Include directory “D:\ARDUINOworkspace”

J++ Build
C/C++ General
Documentation

File Types Languages Include directories

Indexer GMHU C

Language Mappings < S asm Edit...

e - . e/ 33 e Delete
Project References g R) o

) L [cfwinawr-20100110/avr/include
Run/Debug Settings Export
Task Repository

Select “OK”

You may be prompted to “rebuild”. Choose “Yes”.

(continued...)

USING THE “MSOE” SUPPORT FUNCTIONS

Step 2: Include the MSOE support functions in the source code
We will use the “delay _ms()” function to control the timing

The function source code must be “included” within our program

The function itself is contained in a file called “delay.c”

Add the following line of code:
E:| Project Explorer 52 _ = g El *myFirstProject.c s
#include <av

#inclode <inttypes.h>
#include <MSCOE/delay.c>

== ryFirstProject
3‘;:;" Binaries
IE_I-” Includes
= Debug

volid delay (uintle t x):

€] myFirstProject.c int main(void)
2= testArduinoUMO I
DDRE |= (1<<PORTES);
PORTB = 0;

(continued...)

USING THE “MSOE” SUPPORT FUNCTIONS

Step 3: Call the function within our program

The “delay_ms()” function accepts an unsigned |6-bit integer parameter
that controls the time delay (in milliseconds)

Make the following modifications:

Ej Project Explorer & = 0| (] *myFirstProject.c 3
: #include
#include nct
#include <MSOE/delav.c>

=3 myFirstProject

12;;" Binaries

[l Includes

= Debug

[g myFirstProject.c
=5 testArduinoUNO

vold delay(uintlé t x);

int main(void)

{ DDRE |= (l<<PORIED); dEIay_mS(SOO);

BCRTEB = 0: o ll:
Produces a 500 millisecond delay
while (1)
{
Jidelav(5):
delay ms (500);
PORTE "= (1<<PORTEBS);

(continued...)

USING THE “MSOE” SUPPORT FUNCTIONS

Save your program and build it!

The “Problems” tab will alert you to any errors or warnings
that resulted from the build process:

“0 items” means a successful build!

Upload the .hex file to the UNO board

Experiment with the “delay_ms()” function to alter the blink rate and
pattern

ONE FINAL NOTE:THE AVR MATH LIBRARY

When a program is doing lots of calculations (e.g., floating point, calls to functions

Y ¢«

such as “sqrt”,“cos”, etc) it is a good idea to use the AVR Math Library

The AVR Math Library contains code which has been optimized for use on the
AVR microcontrollers — so things run fast and efficiently!

To use it:
Select “Project” then “Properties”

Expand the “C/C++ General” arrow and select “Paths and Symbols”
In the “Libraries” tab,“Add” an entry named “m”

C/C++ General

Code Style [Eh'- Includes | # Symbols b Li ies | = Source Location

Documentation

File Types [=m

Indexer

Language Mappings

Paths and Symbols
Project References

EurTlehn Hinn

Select “OK”

CONGRATULATIONS!!!

You now have a fully functioning Arduino UNO
development system in Eclipse!

Programming the Arduino board in C unlocks the full
functionality of the ATmega328p microcontroller!

Writing software in C also provides greater flexibility:

For example, your C programs could easily be “built” for a different microcontroller!

