
USING THE ARDUINO UNO

WITH ECLIPSE

Milwaukee School of Engineering

Created: June 2011

Last Update: 13 September 2013

Author: Cory J. Prust, Ph.D.

ECLIPSE OVERVIEW

Eclipse is an open-source software development

system

Can be used to program the Arduino UNO board

in C or C++

Allows greater access to and control of

microcontroller subsystems

BEFORE CONTINUING…

The Arduino UNO drivers must be installed!

 For details, see the Arduino Installation tutorial:

 https://faculty-web.msoe.edu/prust/arduino

Determine which COM port is assigned to the Arduino

UNO board:

 In Windows, click on the Start Menu and open the Control Panel

 Choose System and Security and then, under System, open the

Device Manager

 Under Ports (COM & LPT) locate “Arduino UNO”

IMPORTANT:
Note the “COM” port

https://faculty-web.msoe.edu/prust/arduino
https://faculty-web.msoe.edu/prust/arduino
https://faculty-web.msoe.edu/prust/arduino

OVERVIEW

 Step 1: Installing WinAVR

 Step 2: “Installing” Eclipse

 Step 3: Using Eclipse

 Step 4: Building a Project and Testing the UNO

 Step 5: Creating a New Project

 Step 6: Using the MSOE Support Functions

INSTALLING WINAVR

 WinAVR contains the AVR toolchain (plus many other useful tools):

 avr-gcc: compiles our C programs

 avr-dude: programs the Arduino UNO

 Eclipse will use WinAVR automatically – we just need to install it!

 Download the latest release of WinAVR from

 https://faculty-web.msoe.edu/prust/arduino

 Run the installation using default settings.

IMPORTANT: You must use the default installation directory!

C:\WinAVR-20100110

https://faculty-web.msoe.edu/prust/arduino
https://faculty-web.msoe.edu/prust/arduino
https://faculty-web.msoe.edu/prust/arduino

“INSTALLING” ECLIPSE

Download the Eclipse archive (.zip file) from

 https://faculty-web.msoe.edu/prust/arduino

Extract the .zip file to your D:\ drive

After unzipping, you should see two folders:

 D:\eclipse

 D:\ARDUINOworkspace

(continued…)

https://faculty-web.msoe.edu/~prust/arduino
https://faculty-web.msoe.edu/~prust/arduino
https://faculty-web.msoe.edu/~prust/arduino

“INSTALLING” ECLIPSE

 The executable is located in D:\eclipse. Double-click to start Eclipse.

 For quicker access to Eclipse, create a shortcut to the executable.

D:\eclipse

executable

USING ECLIPSE

You will see the following screen - it defines

“D:\ARDUINOworkspace” as the location for your Arduino

projects

 Select “OK”

You will then see the Eclipse workbench

(continued…)

USING ECLIPSE

Project Explorer

All projects in the current workspace

(ARDUINOworkspace) are shown here.

Only the selected project is “active”.

“testArduinoUNO” is a sample project.

Console Window

Messages from the compiler, linker, and

programmer will be displayed here.

Build Icon

Pressing this button results in a “build” of

the active project. The result of a

successful build is a “.hex” file which can

be uploaded onto the UNO board.

Upload Icon

Pressing this button sends the program

(in the form of a “.hex” file) to the

ATmega328p on the UNO board.

Problems Window

Displays warning and error messages

that result from the build process.

BUILDING A PROJECT

 The project “testArduinoUNO” has been included as a sample project

 Expand the project in the Project Explorer. You should see the following:

 “testArduinoUNO.c” is the source code. Double-click to open and

examine the code.

(continued…)

BUILDING A PROJECT

 To build the project, click the build icon

 The build may take a minute or two

 Information regarding the build process is shown in the console window.

 The build process generates several files, which can be seen in the Project

Explorer window:

.hex file used to program the

ATmega328p microcontroller

TESTING THE UNO

 Eclipse must know which COM port the UNO board is connected to.

 Select “Project” then “Properties”

 Expand the “AVR” arrow and select “AVRDude”

 The “Programmer configuration” should read “ArduinoUNO”. Click the “Edit” button

 Change the “Override default port (-P)” setting to the correct COM port, and

select “OK” (twice)

 For example, the correct setting for COM5 would be: //./COM5

TESTING THE UNO

 Connect your Arduino UNO board to your laptop

 Press the upload icon

 Information regarding the upload process is shown in the console

window.

 A successful upload results in the following message:

 The yellow LED (marked “L”) should be blinking!

CREATING A NEW PROJECT

 You will need to create new projects in Eclipse, for example, when you
begin a new laboratory assignment.

 IMPORTANT: Keep all of your projects in “ARDUINOworkspace”!

 Select “File – New – C Project”

 Give the project a descriptive name

 Do not use spaces or any special characters

“my First Project” BAD

“myFirstProject” GOOD

 Project type: “Empty Project”

 Toolchain: “AVR-GCC Toolchain”

 Select “Next”

(continued…)

CREATING A NEW PROJECT

 Click the “Advanced Settings” button

 Expand the “AVR” arrow and select “AVRDude”

 Under “Programmer configuration”, use the drop-down box to select
“ArduinoUNO”

 Expand the “C/C++ Build” arrow and select “Settings”

 Under the “Tool Settings” tab, check the “Generate HEX file for FLASH
memory” option

 Click “OK”, and “Next”

(continued…)

CREATING A NEW PROJECT

 Set the MCU Type to “ATmega328p”

 Set the MCU Frequency (Hz) to “16000000”

 The Arduino UNO board has a 16MHz crystal

which provides the CPU clock to the ATmega328p

 Choose “Finish”

 You will see your new project in the Project

Explorer

(continued…)

Note: The selected

project is “active”

CREATING A NEW PROJECT

 We now need to add a source file (.c)

 From within the Project Explorer, right-click on your project and select
“New – Source File”

 Give your source file a descriptive name

 e.g., “myFirstProject.c”

 IMPORTANT: the file name must end with “.c”

 Choose “Finish”

CREATING A NEW PROJECT

The source file is now part of your project and will be used

during the build process.

As a test, copy/paste the source code from the

“testArduinoUNO” project into your new project:

 Experiment with the delay function to alter the blink rate and pattern

 Build the new project

 Upload the .hex file to the UNO board

IMPORTANT:

Only the “active” project will be built!

Make a project “active” by selecting it in Project Explorer

EDIT CODE

in C Source File

BUILD

Executable Hex File

UPLOAD

Hex File to UNO

TEST and DEBUG

CREATE NEW PROJECT

CONFIGURE SETTINGS

ADD “C” Source File

SUMMARY: USING ECLIPSE

USING THE “MSOE” SUPPORT FUNCTIONS

 Within “D:\ARDUINOworkspace” is a directory named “MSOE”

containing a variety of functions:

 delay.c – time delay functions

 lcd.c – LCD control functions

 bit.c – general purpose functions

 These functions can easily be used within Eclipse:

 Must tell Eclipse their location on the filesystem

 Must “include” the files in our source code

 Must properly “call” the functions within our program

 Next, we will modify our program to allow precise timing of the “blink”

(continued…)

USING THE “MSOE” SUPPORT FUNCTIONS

 Step 1: Tell Eclipse the location of the MSOE support functions

 Select “Project” then “Properties”

 Expand the “C/C++ General” arrow and select “Paths and Symbols”

 In the “Includes” tab, “Add” an Include directory “D:\ARDUINOworkspace”

 Select “OK”

 You may be prompted to “rebuild”. Choose “Yes”.

(continued…)

USING THE “MSOE” SUPPORT FUNCTIONS

 Step 2: Include the MSOE support functions in the source code

 We will use the “delay_ms()” function to control the timing

 The function source code must be “included” within our program

 The function itself is contained in a file called “delay.c”

 Add the following line of code:

(continued…)

USING THE “MSOE” SUPPORT FUNCTIONS

 Step 3: Call the function within our program

 The “delay_ms()” function accepts an unsigned 16-bit integer parameter

that controls the time delay (in milliseconds)

 Make the following modifications:

(continued…)

delay_ms(500);

Produces a 500 millisecond delay

USING THE “MSOE” SUPPORT FUNCTIONS

 Save your program and build it!

The “Problems” tab will alert you to any errors or warnings
that resulted from the build process:

 “0 items” means a successful build!

Upload the .hex file to the UNO board

 Experiment with the “delay_ms()” function to alter the blink rate and
pattern

ONE FINAL NOTE: THE AVR MATH LIBRARY

 When a program is doing lots of calculations (e.g., floating point, calls to functions
such as “sqrt”, “cos”, etc) it is a good idea to use the AVR Math Library

 The AVR Math Library contains code which has been optimized for use on the
AVR microcontrollers – so things run fast and efficiently!

 To use it:

 Select “Project” then “Properties”

 Expand the “C/C++ General” arrow and select “Paths and Symbols”

 In the “Libraries” tab, “Add” an entry named “m”

 Select “OK”

CONGRATULATIONS!!!

You now have a fully functioning Arduino UNO

development system in Eclipse!

Programming the Arduino board in C unlocks the full

functionality of the ATmega328p microcontroller!

Writing software in C also provides greater flexibility:

 For example, your C programs could easily be “built” for a different microcontroller!

