
1

Using the Matlab Debugger (v. 1.1)
Prepared & copyright by Dr. C. S. Tritt

Last revised 11/29/11

A debugger is a special mode or program for executing code in a tightly controlled and interactive
manor. Debuggers allow you to pause program execution at specific points or under specified
conditions. While in this paused state, you can interactively investigate the values of variables and other
aspects of the program's state. Debuggers are generally used for finding hard to find errors the cause of
which is not immediately obvious after under careful code examination.

For more information see Matlab > User's Guide > Desktop Tools and Development Environment >
Editing and Debugging Matlab Code > Debugging Process and Features in Matlab help.

Note – If you want to edit an .m file while debugging, it is best to first quit the debug mode and then
edit and save changes to the file. If you edit a file while paused in debug mode, you can get unexpected
results when you resume execution of the file, the results might not be reliable and you'll probably get
very confused.

The same Matlab debugger is integrated into both the Matlab editor and command windows. You can
freely switch back and forth between the two interfaces while debugging.

Debugger Example Windows

Figure 1: The editor window during a typical debugging session. An unconditional break point was set at
line 28 (as indicated by the red circle) and the program was run. Execution automatically paused on line
28 (as indicated by the green arrow).

Figure 2: The command window during the debugging session described in Figure 1. The blue 28
indicates the program has stopped on line 28 (and links to it in the editor). The K>> prompt indicates the
debugger is waiting for a command. Matlab expressions can also be entered at this prompt.

2

Debugger Command Window Commands (bold indicates the most commonly used commands)

dbstop – sets a break point at the specified location or for the specified condition. See help for details.
dbclear – Remove breakpoint.
dbcont – Resume execution.
dbdown – Change local workspace context.
dbstack – List who called whom.
dbstatus – List all breakpoints.
dbstep – Execute one or more lines.
dbtype – List M-file with line numbers.
dbup – Change local workspace context.
dbquit – Quit debug mode.

Setting and Clearing Breakpoints in the Editor

The buttons are used in the editor to control debugging. The Set/Clear Breakpoint (red
circle) button sets and clears a breakpoint on the current line. The Clear Breakpoints (red X) button
clears all currently set breakpoints. The Run (green triangle) button saves the file if has been modified
and starts running the file. Execution will pause at the first applicable
breakpoint. Breakpoints can also be set by left clicking in the dashes
(–) to the right of the line numbers. Breakpoints can be cleared,
disabled or modified by right clicking on them (as shown to the right).

Editor Debugging Buttons

Debugging Sessions

A debugging session can be started from either the editor window (by setting one or more break points
and clicking on the green triangle Run button) or from the command windows (by setting one or more
breakpoints using the dbstop command and entering the name of the function or script).

