Dealing with units and constants in EES version 7.441 (Handout version 5.0)

Prepared by C. S. Tritt, Ph.D. September 20, 2005

EES variables can have units associated with them. Using these associated units, EES can check equations for dimensional consistency and appropriate unit conversions. To perform a units and dimensions check, use *Calculate* | *Check units* (or *F8*).

There are two ways to associate units with variables. A comment after the declaration of a variable can specify its units using the format "[*units*]", where *units* are the units of the quantity specified. However, some quantities are never explicitly defined in EES. These are variables that appear in equations and are to be solved for by EES. Use *Options* | *Variable information* to open a dialog box that permits the specification of units for these quantities.

Do not use the comment unit specification method to **change** the units associated with particular variables. At least some versions of EES did not seem to handle this situation correctly. It kept the previously defined units. The *Options* | *Variable information* approach should be used to change the units associated with a variable in these cases.

It appears that, in the current version of EES, built-in EES functions are aware of the units specified for variables and return values having units. This is a new feature and I've not thoroughly investigated it. If no units are specified, the functions use the units specified in the *Options* | *Unit system* dialog for both arguments and return values.

The units and dimensions recognized by EES are defined in the *units.txt* file in the main EES folder. Appendix A of this handout lists the dimensions and units defined in a previous version of the default *units.txt* file.

EES also contains a library of predefined constants. Constant names end with the # symbol. Constant are defined in the *constants.txt* file in the main EES folder. Appendix B of this handout lists the constants defined in a previous version of the default *constants.txt* file. The *Options* | *Constants* menu choice displays a table of predefined EES constants.

Menu choice Options | Units conversion info

Activate the units conversion information dialog and click on the dimension in the list at the left. All of the units which have been defined with that dimension are listed on the right. Note that only the defined units having the selected dimension are listed. For example, if you click on Area, only *acre*, *barn* and *hectares* will be displayed. However, any combination of units having the dimensions indicated at the top of the right list (e.g., L^2 for Area) can be used in the Convert function.

You can add additional units if needed by entering them into the *units.txt* file in the main EES directory. Instructions for adding information are provided at the top of the file.

Check Units Command

The Check Units command will check the dimensional and unit conversion consistency of all equations in the main part of the equations window. The equations in internal functions and procedures do not have units and are not checked. The results are reported in the Debug window.

It is necessary to enter the units of each variable for the checking process to function properly. The units can be entered in the *Options* | *Variable Info* dialog window or in the Solution window. The units of a variable set to a constant in the Equations window can also be set with in a comment by enclosing the units in square brackets. For example:

P=140 "[kPa]" {this equation will set P=140 and its units to kPa}

The checking algorithm cannot know the units of conversion constants, so it is best to avoid them in your equations. Instead, it is preferable to define constants or use the Convert function. For example, suppose you have two variables, L_inch and L_feet, whose units are set to inches and feet, respectively which are used in the following equation.

```
L_inch=L_feet*12
```

When the Check Units command is issued, the Debug window will appear and this equation will be flagged as having an error because the units of 12 are not known.

However, if the Convert function is employed as shown next, the equation will be accepted with no error.

```
L_inch=L_feet*convert(ft,in)
```

The Check Units command will display the equation and an explanatory message for each equation that is found to have dimensional consistency or unit consistency errors. If you click the left mouse button on an equation, the focus will jump to that equation in the Equations window. If you click the right mouse button on an equation, an abbreviate form of the Variable Information dialog window will appear showing just the variables that appear in that equation.

Convert Function

The convert function provides unit conversions. The format of the convert function is

```
convert('from', 'to')
```

where *from* and *to* are unit designations provided either as string constants or string variables. If string constants are used, the single quote marks are optional. String variables are identified with a \$ as the final character in the variable name.

NOTE: The **CONVERT** function will convert temperature differences but it does NOT convert temperatures from one scale to another. Use the **CONVERTTEMP** function for this purpose.

The *convert* function returns the value X which satisfies the following relation:

From = X * To

As a specific example,

FI=Convert(ft^2, in^2)

will set FI to a value of 144 because 1 square foot is 144 square inches.

Combination of units and multiple unit terms may be entered. In a combination of units, such as Btu/hr-ft^2-R, the individual units are separated with a multiplication symbol (i.e., *), a dash (i.e., -) or division signs. Only a single division symbol may be used in any one term. All units to the right of the division symbol are assumed to be in the denominator (i.e., raised to a negative power). The ^ symbol is optional so ft2 and ft^2 are equivalent. The following example converts 5 Btu/hr-ft^2- into W/m2-K and sets H equal to this number:

H=5*Convert('Btu/hr-ft^2-R','W/m2-K)

The *convert* function will accept multiple unit terms. Each term is enclosed within parentheses. Terms are separated with an optional * symbol or with a / symbol, as in the example below.

P =15* Convert((lbm/ft3)*(ft)/(s^2/ft), kPa)

The defined unit symbols can be displayed with the Unit Conversion Info command in the Options menu.

If you find that a unit you need is not defined, you can enter it by editing the *units.txt* file in the EES directory. Instructions for entering new units are provided in the *units.txt* file.

The Convert function should be used in preference to constants that have inherent dimensions (e.g., 144 in^2/ft^2) in order to avoid false error reports from the *Solve* | *Check units* command.

Converttemp Function

The *ConvertTemp* function converts temperatures from one scale to another. Four scales are supported: Celsius (C), Kelvin (K), Fahrenheit (F), and Rankine (R). The *ConvertTemp* function has the following format:

ConvertTemp(from, to, temperature)

The first two parameters are string constants or string variables which must be C, K, F, or R. Both upper and lower case letters are permitted. The single quotes surrounding the string constants are permitted but not required. The third parameter is a temperature in the scale indicated by the first parameter. The function returns the temperature in the scale indicated by the second parameter.

Example:

TF=ConvertTemp('C', 'F', 100)

This statement will convert 100°C to the equivalent temperature in °F. The variable TF will be set to 212.

Use the *convert* function to convert differences in temperature from one scale to another.

Greek Characters

If the Show Subscripts and Greek Symbols option in the Preferences dialog is selected, then EES variables having Greek alphabet names will be displayed as Greek symbols. If the variable name consists entirely of capital letters and if the upper case Greek symbol differs from the Arabic letter, then the upper case Greek symbol will be displayed; otherwise the lower case Greek symbol will be displayed. The following table indicates the conversion:

Variable	Upper	Lower
Name	case	Case
ALPHA	α	α
BETA	β	β
CHI	χ	χ
DELTA	Δ	δ
EPSILON	3	3
PHI	Φ	¢
GAMMA	Γ	γ
ETA	η	η
IOTA	l	l
JTHETA	ϑ	φ
KAPPA	κ	κ
LAMBDA	Λ	λ

MU	μ	μ
NU	ν	ν
THETA	Θ	θ
RHO	ρ	ρ
SIGMA	Σ	σ
TAU	τ	τ
UPSILON	υ	υ
OMEGA	Ω	ω
XI	[1]	بح
PSI	Ψ	Ψ
ZETA	ζ	ζ

Special Symbols

To enter these symbols, hold the Alt key down and enter the three digits on the numeric keypad with NumLock engaged:

- μ Alt-230
- ± Alt-241
- ÷ Alt-246
- ° Alt-248

Formatting Additions to Enhance Variable Display

X_1 will display as X with a subscript 1
X_bar will display with a bar centered above the X
X_dot will display with a dot centered above the X
X_ddot will display with a double-dot centered above the X
X_hat will display with a hat (^) centered above the X
X|star will display as X*
X|plus will display as X superscript+
x|o will display as X subcript o

Note: much of the material in this handout was taken from the EES help pages.

Appendix A – EES Default Units (from *units.txt*)

The basic dimensions and the selected unit for each dimension are:

L	Length	m
Μ	Mass	kg
Ν	Moles	kmole
Т	Time	sec
D	Temperature difference	Κ
А	Angle	radian
С	Charge	coulomb

You may enter additional unit definitions to this file. To do so, enter the unit name followed by its conversion factor into the selected set of dimensions indicated above separated with one or more spaces. Designate a new dimension type by preceding the description with a \$ and provide the basic dimensions in parentheses.

\$Length (L)	kg 1	min 60	
m 1	lbm 0.453592374	minute 60	
meter 1	lb_m 0.453592374	h 3600	
metre 1	g 0.001	hr 3600	
Angstrom 1E-10	ton 907.184749	hour 3600	
nm 1E-9	grain 6.4799e-5	day 86400	
ft 0.3048	mg 1e-6	days 86400	
dm 0.1	oz 0.028349523	week 604800	
in 0.0254	ozm 0.028349523	weeks 604800	
inch 0.0254	slug 14.593881	fortnight 1.2096E6	
mm 0.001	stone 6.350293236	year 31.536E6	
micron 1e-6	amu 1.660531E-27	yr 31.536E6	
micrometer 1e-6		years 31.536E6	
μm 1e-6	\$Moles (N)		
nanometer 1e-9	kgmole 1	\$Frequency (1/T)	
millimeter 0.001	kgmol 1	cps 6.28318530718	
cm 0.01	kmole 1	cpm 0.10471975512	
km 1000	kmol 1	Bq 6.28318530718	
yd 0.9144	lbmole 0.453592374	ci 23.2477856e10	
yard 0.9144	lbmol 0.453592374	Hz 6.28318530718	
mile 1609.344	gmole 0.001	rps 6.28318530718	
fathom 1.8288	gmol 0.001	rpm 0.10471975512	
mil 0.0000254	mole 0.001		
rod 5.0292	mol 0.001	\$Temp. Difference (D)	
furlong 201.168		K 1	
league 5556	\$Time (T)	C 1	
hectometer 100	s 1	R 0.5555556	
	sec 1	F 0.5555556	
\$Mass (M)	second 1	°C 1	

°F 0.55555556 \$Velocity (L/T) mph 0.44704 knot 0.51444 \$Area (L^2) acre 4046.856 hectare 10000 barn 1e-28 \$Volume (L^3) gal 0.0037854118 1 0.001 Bu 3.523007016688e-2 ml 1e-6 liter 0.001 quart 0.0009463264 oz 2.9572702e-5 ozv 2.9572702e-5 pint 0.000473163 **\$Volumetric flow** $(L^{3/T})$ cfm 0.47194744E-3 gph 1.051503E-6 gpm 6.30902E-5 \$Force (M-L/T^2) N 1 kN 1000 lbf 4.448222 lb f 4.448222 dyne 1E-5 \$Pressure (M/L-T^2) Pa 1 milliPa 1E-3 microPa 1E-6 kPa 1000 MPa 1E6 GPa 1E9 gigaPa 1E9 bar 1E5 milliBar 1E2 atm 1.01325E5

psia 6894.75788958 psi 6894.75788958 ksi 6894757.88958 psig 6894.75788958 psf 47.88055555 mmH2O 9.806614 mmHg 133.3224 inHg 3386.388 torr 133.3224 inH2O 249.088 in.H2O 249.088 ftH2O 2989.057 $Energy (M-L^2/T^2)$ milliJ 1E-3 J 1 kJ 1000 MJ 1E6 kWh 3.6E6 kWhr 3.6E6 GJ 1E9 Btu 1055.056 MBtu 1055056.0 MMBtu 1055056000.0 kBtu 1055056.0 cal 4.1868 kcal 4186.8 erg 1E-7 ev 1.60207E-19 kev 1.60207E-16 mev 1.60207E-13 bev 1.60207E-10 therm 105505600 therms 105505600 \$Power (M-L^2/T^3) W 1 hp 745.700 ton 3516.852 tons 3516.852 microW 1E-6 milliW 1E-3 kW 1000 **MW 1E6** MegaW 1E6 gW 1E9

\$Viscosity-dynamic (M/L-T)poise 0.1 centipoise 0.001 micropoise 1E-7 cp 0.001 Reyn 6894.7 \$Viscosity-kinematic (L^2/T) Stoke 1E-4 centiStoke 1E-6 \$Angles (A) radian 1 radians 1 rad 1 deg 0.017453293 degree 0.017453293 degrees 0.017453293 0.017453293 rev 6.28318530718 revs 6.28318530718 revolutions 6.28318530718 minute 2.90888E-4 quadrant 1.5707963 cycle 6.28318530718 cycles 6.28318530718 \$Charge (C) Coulomb 1 Faraday 96517.844 Abcoulomb 10 **\$Electrical Capacitance** $(C^2-T^2/M-L^2)$ Farad 1 \$Dipole Moment (C-L) Debye 3.33564e-30

gigaW 1E9

\$Current (C/T) Amp 1 Ampere 1 A 1 \$Electrical Resistance (M-L^2/T-C^2) ohm 1 kohm 1000 \$Electromotive Force

(M-L^2/T^2-C) Volt 1 millivolt 0.001 kV 1000 MegaVolt 1E6 v 1 \$Inductance (M-L^2/C^2) Henry 1
\$Cost (\$)
#\$ 1
cents 0.01
\$Non Dimensional ()
Percent 0.01
% 0.01
person 1

persons 1

\$Magnetic Flux Density (M/T-C) Gauss 1E-4 G 1E-4 Tesla 1 T 1

\$Magnetic Flux (M-L^2/T-C) Maxwell 1E-8 Mx 1E-8 Weber 1 Wb 1

\$Magnetic Field Strength (C/T-L) Oersted 79.5774715459 Oe 79.5774715459

Appendix B – EES Default Constants (from *constants.txt*)

The default *constants.txt* file contains the following definitions:

//Name [tab] Description [tab] SIValue [tab] SIUnits [tab] EngValue [tab], EngUnits Propylene (gas) enthalpy of formation (25C, 77F) -20410 kJ/kmol-8.774720E+03 Btu/lbmol h C3H6 q# h# Planck's constant 6.626196e-34 J-s 6.280421E-37 Btu-s Proton rest mass Mp# 1.672614e-27 kg 3.687483E-27 lb_m m^3/kmol Vo# Volume of ideal gas, standard conditions 2.24136e1 3.590314E+02 ft^3/lbmol R_inf# Rydberg constant 1.097373e7 1/m 3.344793E+06 1/ft Normal atmospheric pressure 101.325 kPa 1.469594E+01 psia Po# Methanol (liq) enthalpy of formation (25C, 77F) -238660 kJ/kmol -1.026053E+05 Btu/lbmol h_CH3OH_1# Methanol (gas) enthalpy of formation (25C, 77F) -200670 kJ/kmol -8.627257E+04 Btu/lbmol h CH3OH q# h C8H18 q# n-Octane (gas) enthalpy of formation (25C, 77F) -208450 kJ/kmol -8.961737E+04 Btu/lbmol 1.674920e-27 kg 3.692567E-27 lb_m Mn# Neutron rest mass n-Octane (liq) enthalpy of formation (25C, 77F) -249950 kJ/kmol -1.074591E+05 Btu/lbmol h C8H18 1# Blue# the color blue 16711680 16711680 TT# Unified atomic mass unit 1.660531e-27 kg 3.660845E-27 lb m C# Speed of light in a vacuum 2.9979250e8 9.835712E+08 ft/s m/s Yellow# the color vellow 65535 65535 Green# the color green 65280 65280 h_fg_water# Enthalpy of vaporization of water (25C, 77F) 2441.5 kJ/kg 1.049656E+03 Btu/lb m G sc# Solar constant 1367 W/m^2 433 Btu/ft^2-hr speed of sound in dray air at 0 C and 1 atm 331.36 m/s SndSpeed# 1089 ft/s $T_zero \# T_zero \# + C (or F) = K (or R) 273.15 K$ 459.67 R sigma# Stefan-Boltzmann constant 5.66961e-8 W/m^2-K^4 1.712065E-09 Btu/hr-ft^2-R^4 h H2O2# Hydrogen peroxide (gas) enthalpy of formation (25C, 77F) -136310 kJ/kmol -5.860275E+04 Btu/lbmol Gas constant 8.31434 kJ/kmol-K R# 1.985846 Btu/lbmol-R Classical electron radius 2.817939e-15 m 9.245207E-15 r e# ft h_CH2# Acetylene enthalpy of formation (25C, 77F) 226730 kJ/kmol 9.747635E+04 Btu/lbmol Gravitational constant 6.6732e-11 $N-m^2/kg^2$ 3.3224e-11 lb_f-ft^2/lb_m^2 ac# Boltzmann's constant 1.380622e-23 J/K 7.269872E-27 Btu/R k# C1# Blackbody radiation constant 1 3.7420e8 W-micrometer^4/m^2 1.187e8 Btu-micrometer^4/hr-ft^2 h_C6H6# Benzene (gas) enthalpy of formation (25C, 77F) 82930 kJ/kmol 3.565348E+04 Btu/lbmol e# Electron charge 1.6021917e-19 Coulomb 1.6021917e-19 Coulomb h NH3# Ammonia (gas) enthalpy of formation (25C, 77F) -46190 kJ/kmol -1.985812E+04 Btu/lbmol Avogadro's constant 6.022169e26 1/kmol 6.022169e26 NA# 1/lbmol F# Faraday's constant 9.648670E7 Coulomb/kmol 4.376563E7 Coulomb/lbmol Gravitational acceleration (sea level) 9.807 m/s² 3.217520E+01 ft/s² a# h C2H4# Ethylene enthalpy of formation (25C, 77F) 52280 kJ/kmol 2.247635E+04 Btu/lbmol Ethanol (lig) enthalpy of formation (25C, 77F) -277690 kJ/kmol -1.193852E+05 Btu/lbmol h C2H5OH 1# C2# Blackbody radiation constant 2 1.4388e4 micrometer-K 2.5897e4 micrometer-R e\Me# Electron charge to mass ratio 1.7588028e11 Coulomb/kg 7.977796E+10 Coulomb/lb_m Blackbody radiation constant 3 2897.7 micrometer-K 5215.6 micrometer-R C3# Red# red 255 255

Me#	Electron rest mass	9.109558e-31 kg	2.008314E-30	lb_m	
h_C2H50	H_g# Ethanol (gas)	enthalpy of formation	(25C, 77F)	-235310 kJ/kmol -1.011650E+05	Btu/lbmol
White#	the color white	16777215	16777215		
Black#	the color black	0 0			
false#	true# and false# are	used in logic tests	0	0	
true#	true# and false# are	used in logic tests	1	1	