Dealing with units and constants in EES version 7.441 (Handout version 5.0)
Prepared by C. S. Tritt, Ph.D.
September 20, 2005
EES variables can have units associated with them. Using these associated units, EES can check equations for dimensional consistency and appropriate unit conversions. To perform a units and dimensions check, use Calculate \mid Check units (or F8).

There are two ways to associate units with variables. A comment after the declaration of a variable can specify its units using the format "[units]", where units are the units of the quantity specified. However, some quantities are never explicitly defined in EES. These are variables that appear in equations and are to be solved for by EES. Use Options \mid Variable information to open a dialog box that permits the specification of units for these quantities.

Do not use the comment unit specification method to change the units associated with particular variables. At least some versions of EES did not seem to handle this situation correctly. It kept the previously defined units. The Options | Variable information approach should be used to change the units associated with a variable in these cases.

It appears that, in the current version of EES, built-in EES functions are aware of the units specified for variables and return values having units. This is a new feature and I've not thoroughly investigated it. If no units are specified, the functions use the units specified in the Options \mid Unit system dialog for both arguments and return values.

The units and dimensions recognized by EES are defined in the units.txt file in the main EES folder. Appendix A of this handout lists the dimensions and units defined in a previous version of the default units.txt file.

EES also contains a library of predefined constants. Constant names end with the \# symbol. Constant are defined in the constants.txt file in the main EES folder. Appendix B of this handout lists the constants defined in a previous version of the default constants.txt file. The Options \mid Constants menu choice displays a table of predefined EES constants.

Menu choice Options | Units conversion info

Activate the units conversion information dialog and click on the dimension in the list at the left. All of the units which have been defined with that dimension are listed on the right. Note that only the defined units having the selected dimension are listed. For example, if you click on Area, only acre, barn and hectares will be displayed. However, any combination of units having the dimensions indicated at the top of the right list (e.g., $L^{\wedge} 2$ for Area) can be used in the Convert function.

You can add additional units if needed by entering them into the units.txt file in the main EES directory. Instructions for adding information are provided at the top of the file.

Check Units Command

The Check Units command will check the dimensional and unit conversion consistency of all equations in the main part of the equations window. The equations in internal functions and procedures do not have units and are not checked. The results are reported in the Debug window.

It is necessary to enter the units of each variable for the checking process to function properly. The units can be entered in the Options \mid Variable Info dialog window or in the Solution window. The units of a variable set to a constant in the Equations window can also be set with in a comment by enclosing the units in square brackets. For example:
$P=140$ "[kPa]" \{this equation will set $P=140$ and its units to kPa\}
The checking algorithm cannot know the units of conversion constants, so it is best to avoid them in your equations. Instead, it is preferable to define constants or use the Convert function. For example, suppose you have two variables, L_inch and L_feet, whose units are set to inches and feet, respectively which are used in the following equation.

```
L_inch=L_feet*12
```

When the Check Units command is issued, the Debug window will appear and this equation will be flagged as having an error because the units of 12 are not known.

However, if the Convert function is employed as shown next, the equation will be accepted with no error.

L_inch=L_feet*convert (ft,in)
The Check Units command will display the equation and an explanatory message for each equation that is found to have dimensional consistency or unit consistency errors. If you click the left mouse button on an equation, the focus will jump to that equation in the Equations window. If you click the right mouse button on an equation, an abbreviate form of the Variable Information dialog window will appear showing just the variables that appear in that equation.

Convert Function

The convert function provides unit conversions. The format of the convert function is
convert('from', 'to')
where from and to are unit designations provided either as string constants or string variables. If string constants are used, the single quote marks are optional. String variables are identified with a $\$$ as the final character in the variable name.

NOTE: The CONVERT function will convert temperature differences but it does NOT convert temperatures from one scale to another. Use the CONVERTTEMP function for this purpose.

The convert function returns the value X which satisfies the following relation:

From $=\mathrm{X}$ * To
As a specific example,
FI=Convert $\left(\mathrm{ft}^{\wedge} 2, \mathrm{in}^{\wedge} 2\right)$
will set FI to a value of 144 because 1 square foot is 144 square inches.
Combination of units and multiple unit terms may be entered. In a combination of units, such as $\mathrm{Btu} / \mathrm{hr}-\mathrm{ft} \wedge 2-\mathrm{R}$, the individual units are separated with a multiplication symbol (i.e., *), a dash (i.e., -) or division signs. Only a single division symbol may be used in any one term. All units to the right of the division symbol are assumed to be in the denominator (i.e., raised to a negative power). The ${ }^{\wedge}$ symbol is optional so ft 2 and $\mathrm{ft} \wedge 2$ are equivalent. The following example converts $5 \mathrm{Btu} / \mathrm{hr}-\mathrm{ft} \wedge 2$ - into $\mathrm{W} / \mathrm{m} 2-\mathrm{K}$ and sets H equal to this number:

H=5*Convert ('Btu/hr-ft^2-R', 'W/m2-K)
The convert function will accept multiple unit terms. Each term is enclosed within parentheses. Terms are separated with an optional * symbol or with a / symbol, as in the example below.
$P=15 * \operatorname{Convert}\left((1 \mathrm{bm} / \mathrm{ft} 3) *(\mathrm{ft}) /\left(\mathrm{s}^{\wedge} 2 / \mathrm{ft}\right), \mathrm{kPa}\right)$
The defined unit symbols can be displayed with the Unit Conversion Info command in the Options menu.

If you find that a unit you need is not defined, you can enter it by editing the units.txt file in the EES directory. Instructions for entering new units are provided in the units.txt file.

The Convert function should be used in preference to constants that have inherent dimensions (e.g., $144 \mathrm{in}^{\wedge} 2 / \mathrm{ft} \wedge 2$) in order to avoid false error reports from the Solve | Check units command.

Converttemp Function

The ConvertTemp function converts temperatures from one scale to another. Four scales are supported: Celsius (C), Kelvin (K), Fahrenheit (F), and Rankine (R). The ConvertTemp function has the following format:

ConvertTemp (from, to, temperature)
The first two parameters are string constants or string variables which must be C, K, F, or R. Both upper and lower case letters are permitted. The single quotes surrounding the string constants are permitted but not required. The third parameter is a temperature in the scale indicated by the first parameter. The function returns the temperature in the scale indicated by the second parameter.

Example:
TF=ConvertTemp('C', 'F', 100)
This statement will convert $100^{\circ} \mathrm{C}$ to the equivalent temperature in ${ }^{\circ} \mathrm{F}$. The variable $T F$ will be set to 212 .

Use the convert function to convert differences in temperature from one scale to another.

Greek Characters

If the Show Subscripts and Greek Symbols option in the Preferences dialog is selected, then EES variables having Greek alphabet names will be displayed as Greek symbols. If the variable name consists entirely of capital letters and if the upper case Greek symbol differs from the Arabic letter, then the upper case Greek symbol will be displayed; otherwise the lower case Greek symbol will be displayed. The following table indicates the conversion:

Variable Name	Upper case	Lower Case
ALPHA	α	α
BETA	β	β
CHI	χ	χ
DELTA	Δ	δ
EPSILON	ε	ε
PHI	Φ	ϕ
GAMMA	Γ	γ
ETA	η	η
IOTA	\imath	1
JTHETA	ϑ	φ
KAPPA	κ	κ
LAMBDA	Λ	λ

MU	μ	μ
NU	v	v
THETA	Θ	θ
RHO	ρ	ρ
SIGMA	Σ	σ
TAU	τ	τ
UPSILON	v	v
OMEGA	Ω	ω
XI	Ξ	ξ
PSI	Ψ	ψ
ZETA	ζ	ζ

Special Symbols

To enter these symbols, hold the Alt key down and enter the three digits on the numeric keypad with NumLock engaged:
$\mu \quad$ Alt-230
$\pm \quad$ Alt-241
$\div \quad$ Alt-246

- Alt-248

Formatting Additions to Enhance Variable Display
X_1 will display as X with a subscript 1
X_bar will display with a bar centered above the X
X_dot will display with a dot centered above the X
X_ddot will display with a double-dot centered above the X
X_hat will display with a hat (\wedge) centered above the X
$\mathrm{X} \mid$ star will display as X^{*}
X|plus will display as X superscript+
$\mathrm{x} \mid \mathrm{o} \quad$ will display as X subcript o
Note: much of the material in this handout was taken from the EES help pages.

> Appendix A - EES Default Units (from units.txt)

The basic dimensions and the selected unit for each dimension are:

L	Length	m
M	Mass	kg
N	Moles	kmole
T	Time	sec
D	Temperature difference	K
A	Angle	radian
C	Charge	coulomb

You may enter additional unit definitions to this file. To do so, enter the unit name followed by its conversion factor into the selected set of dimensions indicated above separated with one or more spaces. Designate a new dimension type by preceding the description with a $\$$ and provide the basic dimensions in parentheses.

\$Length (L)	kg 1	min 60
m 1	lbm 0.453592374	minute 60
meter 1	lb_m 0.453592374	h 3600
metre 1	g 0.001	hr 3600
Angstrom 1E-10	ton 907.184749	hour 3600
nm 1E-9	grain 6.4799e-5	day 86400
ft 0.3048	mg 1e-6	days 86400
dm 0.1	oz 0.028349523	week 604800
in 0.0254	ozm 0.028349523	weeks 604800
inch 0.0254	slug 14.593881	fortnight 1.2096E6
mm 0.001	stone 6.350293236	year 31.536E6
micron 1e-6	amu 1.660531E-27	yr 31.536E6
micrometer 1e-6		years 31.536E6
$\mu \mathrm{m}$ 1e-6	\$Moles (N)	
nanometer 1e-9	kgmole 1	\$Frequency (1/T)
millimeter 0.001	kgmol 1	cps 6.28318530718
cm 0.01	kmole 1	cpm 0.10471975512
km 1000	kmol 1	Bq 6.28318530718
yd 0.9144	lbmole 0.453592374	ci 23.2477856e10
yard 0.9144	lbmol 0.453592374	Hz 6.28318530718
mile 1609.344	gmole 0.001	rps 6.28318530718
fathom 1.8288	gmol 0.001	rpm 0.10471975512
mil 0.0000254	mole 0.001	
rod 5.0292	mol 0.001	\$Temp. Difference (D)
furlong 201.168		K 1
league 5556	\$Time (T)	C 1
hectometer 100	s 1	R 0.55555556
	sec 1	F 0.55555556
\$Mass (M)	second 1	${ }^{\circ} \mathrm{C} 1$

${ }^{\circ} \mathrm{F} 0.55555556$
\$Velocity (L/T)
mph 0.44704
knot 0.51444
\$Area (L^2)
acre 4046.856
hectare 10000
barn 1e-28
\$Volume (L^3)
gal 0.0037854118
10.001

Bu 3.523007016688e-2
ml 1e-6
liter 0.001
quart 0.0009463264
oz $2.9572702 \mathrm{e}-5$
ozv $2.9572702 \mathrm{e}-5$
pint 0.000473163
\$Volumetric flow
($\mathrm{L}^{\wedge} 3 / \mathrm{T}$)
cfm 0.47194744E-3
gph $1.051503 \mathrm{E}-6$
gpm 6.30902E-5
\$Force (M-L/T^2)
N 1
kN 1000
lbf 4.448222
lb_f 4.448222
dyne $1 \mathrm{E}-5$
\$Pressure (M/L-T^2)
Pa 1
milliPa 1E-3
microPa 1E-6
kPa 1000
MPa 1E6
GPa 1E9
gigaPa 1E9
bar 1E5
milliBar 1E2
atm 1.01325E5
psia 6894.75788958
psi 6894.75788958
ksi 6894757.88958
psig 6894.75788958
psf 47.88055555
mmH2O 9.806614
mmHg 133.3224
inHg 3386.388
torr 133.3224
inH2O 249.088
in.H2O 249.088
ftH2O 2989.057
\$Energy (M-L^2/T^2)
milliJ 1E-3
J 1
kJ 1000
MJ 1E6
kWh 3.6E6
kWhr 3.6E6
GJ 1E9
Btu 1055.056
MBtu 1055056.0
MMBtu 1055056000.0
kBtu 1055056.0
cal 4.1868
kcal 4186.8
erg 1E-7
ev $1.60207 \mathrm{E}-19$
kev $1.60207 \mathrm{E}-16$
mev 1.60207E-13
bev $1.60207 \mathrm{E}-10$
therm 105505600
therms 105505600
\$Power (M-L^2/T^3)
W 1
hp 745.700
ton 3516.852
tons 3516.852
microW 1E-6
milliW 1E-3
kW 1000
MW 1E6
MegaW 1E6
gW 1E9
gigaW 1E9
\$Viscosity-dynamic
(M/L-T)
poise 0.1
centipoise 0.001
micropoise 1E-7
ср 0.001
Reyn 6894.7
\$Viscosity-kinematic
($\mathrm{L}^{\wedge} 2 / \mathrm{T}$)
Stoke 1E-4
centiStoke 1E-6
\$Angles (A)
radian 1
radians 1
rad 1
deg 0.017453293
degree 0.017453293
degrees 0.017453293

- 0.017453293
rev 6.28318530718
revs 6.28318530718
revolutions
6.28318530718
minute $2.90888 \mathrm{E}-4$
quadrant 1.5707963
cycle 6.28318530718
cycles 6.28318530718
\$Charge (C)
Coulomb 1
Faraday 96517.844
Abcoulomb 10
\$Electrical Capacitance
($\mathrm{C}^{\wedge} 2-\mathrm{T}^{\wedge} 2 / \mathrm{M}-\mathrm{L}^{\wedge} 2$)
Farad 1
\$Dipole Moment (C-L)
Debye 3.33564e-30
\$Current (C/T)
Amp 1

Ampere 1	\$Inductance (M-	Gauss 1E-4
A 1	$\mathrm{L}^{\wedge} 2 / \mathrm{C}^{\wedge} 2$)	G $\quad 1 \mathrm{E}-4$
	Henry 1	Tesla 1
\$Electrical Resistance		T 1
(M-L^2/T-C^2)	\$Cost (\$)	
ohm 1	\#\$ 1	\$Magnetic Flux (M-
kohm 1000	cents 0.01	L^2/T-C)
		Maxwell 1E-8
\$Electromotive Force	\$Non Dimensional ()	Mx 1E-8
(M-L^2/T^2-C)	Percent 0.01	Weber 1
Volt 1	\% 0.01	Wb 1
millivolt 0.001	person 1	
kV 1000	persons 1	\$Magnetic Field
MegaVolt 1E6		Strength (C/T-L)
v 1	\$Magnetic Flux Density	Oersted 79.5774715459
	(M/T-C)	Oe 79.5774715459

Appendix B - EES Default Constants (from constants.txt)

The default constants.txt file contains the following definitions:

Me\# Electron rest mass 9.109558e-31 kg 2.008314E-30 1b m
h C2H50H_g\# Ethanol (gas) enthalpy of formation ($25 \mathrm{C}, 77 \mathrm{~F}$)
$\begin{array}{lll}\text { White\# the color white } & 16777215 & 16777215\end{array}$
$\begin{array}{lccc}\text { Black\# the color black } & 0 & 0 & \\ \text { false\# true\# and false\# are used in logic tests } & 0 & 0\end{array}$
true\# true\# and false\# are used in logic tests $1 \quad 1$

