Corrected (10/16/08)
5.

$$
P_{\text {initial }}=P^{\text {sat }}\left(50^{\circ} \mathrm{C}\right)=12.352 \mathrm{kPa}
$$

Final state $P=100 \mathrm{KPa}, V=3.01 \mathrm{~m} 3 / \mathrm{kg} \quad 5 \mathrm{Pts}$ (no change)
$V>V_{\text {sat }} @ 100 \mathrm{kPa}$ so superheated.

$$
T=300+100 \frac{3.01-2.64}{3.10-2.64}=380^{\circ} \mathrm{C} 10 \mathrm{pTs}
$$

$$
\begin{aligned}
& \left.v_{\text {tank }}=(0.500) \mathrm{kg}\right)(3.01 \mathrm{~ms} / \mathrm{kg})=1.50 \mathrm{m3} 55_{\text {pis }} \\
& u=2810.7+1576\left(\frac{3.01-2.64}{3.10-2.64}\right)=2937.5
\end{aligned}
$$

Rigid tank so $Q=\Delta \bar{U}=m \Delta u$

$$
\begin{aligned}
U_{i} & =0.75(209.33)+0.25(2442.7) \mathrm{kJ} / \mathrm{kg} \\
& =767.67 \mathrm{~kJ} / \mathrm{kg} \\
Q & =0.500 \mathrm{~kg}(2937.5-767.67 \mathrm{~kJ} / \mathrm{kg}) \\
& =1085 \mathrm{~kJ}
\end{aligned}
$$

using $Q=A H$ was -3 (answer was 1337 KJ)

