$$
\text { Ave }=80, \text { High }=95, \text { Low }=62
$$

Exam 1 v.1.0 Key
BE-382, Winter '08-'09, Dr. C. S. Tritt
This is a 1 hour closed book, closed notes exam. Write your answers on the paper provided or your own and organize and explain you work for full and partial credit. You may use 1 double sided, $81 / 2$ by 11 inch equation sheet, EES and the provided Units Conversion Factors and Properties handout. If you use EES, e-mail me your files (the file names should encode your last name and the problem number) at the end of the exam and clearly indicate on your exam that you used EES. Please turn in your units conversion handout at the end of the test. Put your name on it if you make any marks or notes in it. There are 3 problems, point values are as indicated.

Conversion factors and the Moody chart are attached.

1. (30) The viscosity of a sample of unknown fluid is to be measured in a concentric cylinder device at $37^{\circ} \mathrm{C}$. The radius of the inner cylinder is 8.00 cm , the gap between the cylinders is 1.00 mm and the length of the cylinders is 10.0 cm . The speed of the inner cylinder is varied and the following torques are measured:

| Speed (rpm) | Torque (N.m) |
| :--- | :--- |
| 300 | 20.21 |
| 450 | 30.32 |
| 600 | 40.43 |

What is the viscosity or apparent viscosities of the fluid and is it Newtonian under the test conditions?
2. (35) It has been proposed that a non-lethal (or at least unlike to be deadly) device be developed to protect ships from pirates in the Gulf of Aden. In particular, a water jet device is being developed. Assuming uniform cross-sectional velocity, what velocity (in ft/s) would a 2.00 inch diameter water ( $\rho=62.3 \mathrm{lb}_{\mathrm{m}} / \mathrm{ft}^{3}$ ) jet require to produce a $200 \mathrm{lb}_{\mathrm{f}}$ force on its target. Assume the water spatters uniformly and particularly upon impact.
3. (35) In an operating room, cooling water flows through a 1.00 cm ID tube at a rate of $6.0 \mathrm{l} / \mathrm{min}$. The tube is 20.0 m long. Given the density of the water is $1002 \mathrm{~kg} / \mathrm{m}^{3}$ and its viscosity is 1.00 cp , what is the pressure drop, in Pa , from end-to-end of the tube?

1. Viscosity determination - concentric cylinder General equation $9-12$ : device.

$$
\begin{aligned}
& T=\mu \frac{4 \pi^{2} R^{3} \dot{n} L}{l} \Rightarrow \mu=\frac{l T}{4 \pi^{2} R^{3} n L} \\
& R=8.00 \mathrm{~cm}=0.080 \mathrm{~m} \\
& L=20.0 \mathrm{~cm}=0.200 \mathrm{~m} \\
& \dot{h}=450 \mathrm{rpm}=\frac{450 / \mathrm{min}}{605 / \mathrm{min}}=7.5 \mathrm{~s}^{-1} \\
& l=0.10 \mathrm{~cm}=0.00100 \mathrm{~m}
\end{aligned}
$$

$2^{\text {nd }}$ case:

$$
\begin{aligned}
\mu & =\frac{(0.00100 \mathrm{~m})(30.32 \mathrm{~N} \cdot \mathrm{~m})}{4 \pi^{2}\left(0.080^{3} \mathrm{~m}^{3}\right)\left(7.5 \mathrm{~s}^{-1}\right)(0.100 \mathrm{~m})} \\
& =2.00 \frac{\mathrm{~N} .5}{\mathrm{~m}^{2}}
\end{aligned}
$$

$1^{\text {sT }}$ cause: $\mu=2.00 \frac{\mathrm{~N}, \mathrm{~s}}{\mathrm{~m}^{2}}$
$3^{\text {nd }}$ case: $\mu=2.00 \mathrm{~N} \cdot \mathrm{~s} / \mathrm{m}^{2}$
So fluid is Newtonian.
-5 units
10 pts for Newtonian
2. Water jet impact force.
start with equation from Example 13-4.
(like equation 13-23).

$$
F=\beta \dot{m} V_{1} \quad 10 \text { prs }
$$

Uniform cross-sectional velocity $\Rightarrow \beta=1$

$$
F=\dot{m} V_{1}
$$

Volumetric flow, $\dot{V}=V A c s$ and mass flow, $\dot{m}=\dot{V} \ell$, so the equation becomes

$$
\begin{aligned}
& F=e^{A_{c s}} V^{2} \text { or } V=\sqrt{\frac{F}{e^{A c s}}} \\
& F=200 \mathrm{lbf} \\
& A_{C 5}=\pi r^{2}=\pi\left(\frac{1}{12} f T\right)^{2}=0.0218 \mathrm{ft}^{2} \\
& e=62.3 \mathrm{ibm} / \mathrm{At}^{3} \text { (given) }
\end{aligned}
$$

$$
\begin{aligned}
& =\sqrt{4740 \mathrm{ft}^{2} / \mathrm{s}^{2}}=68.8 \mathrm{ft} / \mathrm{5}
\end{aligned}
$$

Note this velocity is about 47 mph
so it seems reasonable.
Not converting units -7
3. Pressure drop in a pipe flow.

$$
L / D=20 \mathrm{~m} / 0,01 \mathrm{~m}=2,000 \text { so assume }
$$ fully developed.

Plan to use friction factor?

$$
\begin{aligned}
\Delta P & =f \frac{L}{D} \frac{e V_{a n e}^{2}}{2}\left(E_{q .14-21)}\right. \\
V_{\text {ave }} & =\frac{\dot{V}}{A_{c s}}=\frac{1.00 \times 10^{-4} \mathrm{~m} / \mathrm{s}}{7.85 \times 10^{-5} \mathrm{~m}^{2}}=1.27 \mathrm{~m} / \mathrm{s} \\
\dot{V} & =6.00 \mathrm{l} / \mathrm{min}\left(\frac{1 \mathrm{~m}^{3}}{1000 \mathrm{l}}\right)\left(\frac{1 \mathrm{~min}}{60 \mathrm{~s}}\right)=1.00 \times 10^{-4} \mathrm{~m} / \mathrm{s} \\
A_{c s} & =\pi r^{2}=\frac{\pi D^{2}}{4}=\frac{\pi(0.01 \mathrm{~m})^{2}}{4}=7.85 \times 10^{-5} \mathrm{~m}^{2} \\
N_{R e} & =\frac{e^{V_{\text {ave }} D}}{\mu}=\frac{\left(1002 \mathrm{~kg} / \mathrm{m}^{3}\right)(1.27 \mathrm{mg} / \mathrm{s})(0.01 \mathrm{~m})}{1.00 \times 10^{-3 \mathrm{~kg}} / \mathrm{m} .8} \\
l & =1,002 \mathrm{~kg} / \mathrm{m}^{3} \\
\mu & =1.00 \mathrm{cp}\left(\frac{1 \mathrm{porse}}{100 \mathrm{cp}}\right)\left(\frac{1 \mathrm{~kg} / \mathrm{m} \cdot \mathrm{~s}}{10 \mathrm{perse}}\right)=1.00 \times 10^{-3} \frac{\mathrm{~kg}}{\mathrm{~m} \cdot \mathrm{~s}}
\end{aligned}
$$

Note: Viscosity is defined and discussed on P. 389
$N_{R e}=12,700$, so flow is turbulent

Assume a smooth pipe $(\varepsilon / D=0)$ or smooth rubber $(\varepsilon / D=0.01 \mathrm{~mm} / 10 \mathrm{~m}=0.001)$.
From chart

$$
\begin{array}{ll}
f=0.029 & \text { (smooth) on } \\
f=0.031 & \text { (rubber) }
\end{array}
$$

$$
\Delta P=(0.029)(2,000) \frac{(1002 \mathrm{~kg} / \mathrm{ms})(1.27 \mathrm{~m} / \mathrm{s})^{2}}{2}
$$

$$
=4.69 \times 10^{4} \mathrm{~kg} /(\mathrm{m}, \mathrm{~s})\left(\frac{\mathrm{kPa}}{1000 \mathrm{~kg} /(\mathrm{m}, \mathrm{~s})}\right)
$$

$=46.9 \mathrm{kPa}$ (or about $1 / 2 \mathrm{arm}$, which seems reasonable)
The value for the rubber pipe 15

$$
\Delta P=50.1 \mathrm{KPa}
$$

The Colebrook, Harland or Swamee - Jain equations could also be used.


A couple of students appear to have confused Eq. $14-21$ (which is for pressure loss) with Eq. 14-24 (which is for head lass). Bath of these equations da, in fact relate to the energy lass in a flawing fluid, but the units are different (specifically by $p q$ ).

## Conversion Factors

|  |  <br>  |  |
| :---: | :---: | :---: |
| Acceleration | $1 \mathrm{~m} / \mathrm{s}^{2}=100 \mathrm{~cm} / \mathrm{s}^{2}$ | $1 \mathrm{~m} / \mathrm{s}^{2}=3.2808 \mathrm{ft} / \mathrm{s}^{2}$ |
|  |  | $1 \mathrm{ft} / \mathrm{s}^{2}=0.3048 * \mathrm{~m} / \mathrm{s}^{2}$ |
| Area | $1 \mathrm{~m}^{2}=10^{4} \mathrm{~cm}^{2}=10^{6} \mathrm{~mm}^{2}$ | $1 \mathrm{~m}^{2}=1550 \mathrm{in}^{2}=10.764 \mathrm{ft}^{2}$ |
|  | $=10^{-6} \mathrm{~km}^{2}$ | $1 \mathrm{ft}^{2}=144 \mathrm{in}^{2}=0.09290304 * \mathrm{~m}^{2}$ |
| Density | $1 \mathrm{~g} / \mathrm{cm}^{3}=1 \mathrm{~kg} / \mathrm{L}=1000 \mathrm{~kg} / \mathrm{m}^{3}$ | $\begin{aligned} & 1 \mathrm{~g} / \mathrm{cm}^{3}=62.428 \mathrm{lbm} / \mathrm{ft}^{3}=0.036127 \mathrm{lbm} / \mathrm{m}^{3} \\ & 1 \mathrm{lbm} / \mathrm{in}^{3}=1728 \mathrm{lbm} / \mathrm{ft}^{3} \end{aligned}$ |
|  |  | $1 \mathrm{~kg} / \mathrm{m}^{3}=0.062428 \mathrm{lbm} / \mathrm{ft}^{3}$ |
| Energy, heat, work, internal energy, enthalpy | $1 \mathrm{~kJ}=1000 \mathrm{~J}=1000 \mathrm{Nm}=1 \mathrm{kPa} \cdot \mathrm{m}^{3}$ | $1 \mathrm{~kJ}=0.94782 \mathrm{Btu}$ |
|  | $1 \mathrm{~kJ} / \mathrm{kg}=1000 \mathrm{~m}^{2} / \mathrm{s}^{2}$ | $1 \mathrm{Btu}=1.055056 \mathrm{~kJ}$ |
|  | $1 \mathrm{kWh}=3600 \mathrm{~kJ}$ | $=5.40395 \mathrm{psia} \cdot \mathrm{ft}^{3}=778.169 \mathrm{lbf} \cdot \mathrm{ft}$ |
|  | $1 \mathrm{cal}^{+}=4.184 \mathrm{~J}$ | $1 \mathrm{Btu} / \mathrm{lbm}=25.037 \mathrm{ft}^{2} / \mathrm{s}^{2}=2.326^{*} \mathrm{~kJ} / \mathrm{kg}$ |
|  | $1 \mathrm{IT} \mathrm{cal}^{+}=4.1868 \mathrm{~J}$ | $1 \mathrm{~kJ} / \mathrm{kg}=0.430 \mathrm{Btu} / \mathrm{lbm}$ |
|  | $1 \mathrm{CaI}^{\dagger}=4.1868 \mathrm{~kJ}$ | $1 \mathrm{kWh}=3412.14 \mathrm{Btu}$ |
|  |  | ```1 therm = 105 Btu = 1.055 }\times1\mp@subsup{0}{}{5}\textrm{kJ (natural gas)``` |
| Force | $1 \mathrm{~N}=1 \mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}^{2}=10^{5}$ dyne | $1 \mathrm{lbt}=32.174 \mathrm{lbm} \cdot \mathrm{ft} / \mathrm{s}^{2}=4.44822 \mathrm{~N}$ |
|  | $1 \mathrm{kgf}=9.80665 \mathrm{~N}$ | $1 \mathrm{~N}=0.22481 \mathrm{lbf}$ |
| Heat flux | $1 \mathrm{~W} / \mathrm{cm}^{2}=10^{4} \mathrm{~W} / \mathrm{m}^{2}$ | $1 \mathrm{~W} / \mathrm{m}^{2}=0.3171 \mathrm{Btu} / \mathrm{h} \cdot \mathrm{ft}^{2}$ |
| Heat generation rate | $1 \mathrm{~W} / \mathrm{cm}^{3}=10^{6} \mathrm{~W} / \mathrm{m}^{3}$ | $1 \mathrm{~W} / \mathrm{m}^{3}=0.09665 \mathrm{Btu} / \mathrm{h} \cdot \mathrm{ft}^{3}$ |
| Heat transfer coefficient | $1 \mathrm{~W} / \mathrm{m}^{2} \cdot{ }^{\circ} \mathrm{C}=1 \mathrm{~W} / \mathrm{m}^{2} \cdot \mathrm{~K}$ | $1 \mathrm{~W} / \mathrm{m}^{2} \cdot{ }^{\circ} \mathrm{C}=0.17612 \mathrm{Btu} / \mathrm{h} \cdot \mathrm{ft}^{2}{ }^{\circ}{ }^{\circ} \mathrm{F}$ |
| Length | $1 \mathrm{~m}=100 \mathrm{~cm}=1000 \mathrm{~mm}$ | $1 \mathrm{~m}=39.370 \mathrm{in}=3.2808 \mathrm{ft}=1.0926 \mathrm{yd}$ |
|  | $1 \mathrm{~km}=1000 \mathrm{~m}$ | $1 \mathrm{ft}=12 \mathrm{in}=0.3048^{*} \mathrm{~m}$ <br> $1 \mathrm{mile}=5280 \mathrm{ft}=1.6093 \mathrm{~km}$ |
|  |  | $1 \mathrm{in}=2.54^{*} \mathrm{~cm}$ |
| Mass | $1 \mathrm{~kg}=1000 \mathrm{~g}$ | $1 \mathrm{~kg}=2.2046226 \mathrm{lbm}$ |
|  | 1 metric ton $=1000 \mathrm{~kg}$ | $1 \mathrm{lbm}=0.45359237 * \mathrm{~kg}$ |
|  |  | 1 ounce $=28.3495 \mathrm{~g}$ |
|  |  | $1 \mathrm{slug}=32.174 \mathrm{lbm}=14.5939 \mathrm{~kg}$ |
|  |  | 1 short ton $=2000 \mathrm{lbm}=907.1847 \mathrm{~kg}$ |

"Exact conversion factor between metric and English units.
${ }^{\dagger}$ Calorie is originatly defined as the amount of heat needed to raise the temperature of 1 g of water by $1^{\circ} \mathrm{C}$, but it varies with temperature. The international steam table (IT) calorie (generally preferred by engineers) is exactly 4.1868 J by definition and corresponds to the specific heat of water at $15^{\circ} \mathrm{C}$. The thermochemical calorie (generally preferred by physicists) is exactly 4.184 J by definition and corresponds to the specific heat of water at room temperature. The difference between the two is about 0.06 percent, which is negligible. The capitalized Calorie used by nutritionists is actually a kilocalorie (1000 IT calories).

|  |  | Wat |
| :---: | :---: | :---: |
| Power, heat transfer rate | $1 \mathrm{~W}=1 \mathrm{~J} / \mathrm{s}$ | $1 \mathrm{~kW}=3412.14 \mathrm{Btu} / \mathrm{h}$ |
|  | $1 \mathrm{~kW}=1000 \mathrm{~W}=1.341 \mathrm{hp}$ | $\bigcirc 737.56 \mathrm{lbf} \cdot \mathrm{ft} / \mathrm{s}$ |
|  | $1 \mathrm{hp}=745.7 \mathrm{~W}$ | $\begin{aligned} 1 \mathrm{hp} & -550 \mathrm{lbf} \cdot \mathrm{ft} / \mathrm{s}=0.7068 \mathrm{Btu} / \mathrm{s} \\ & =42.41 \mathrm{Btu} / \mathrm{min}=2544.5 \mathrm{Btu} / \mathrm{h} \\ & =0.74 .570 \mathrm{~kW} \end{aligned}$ |
|  |  | 1 boiler $\mathrm{hp}=33,475 \mathrm{Bta} / \mathrm{h}$ |
|  |  | $1 \mathrm{Btu} / \mathrm{h}=1.055056 \mathrm{~kJ} / \mathrm{h}$ |
|  |  | $1 \text { ton of refrigeration }=200 \mathrm{Btu} / \mathrm{min}$ |
| Pressure | $1 \mathrm{~Pa}=1 \mathrm{~N} / \mathrm{m}^{2}$ | $1 \mathrm{~Pa}=1.4504 \times 10^{4} \mathrm{psia}$ |
|  | $1 \mathrm{kPa}=10^{3} \mathrm{~Pa}=10^{-8} \mathrm{MPa}$ | $=0.020886 \mathrm{lbt} / \mathrm{ft}^{2}$ |
|  | $\mathrm{I} \mathrm{atm}=101.325 \mathrm{kPa}=1.01325$ bars | $1 \mathrm{psia}=144 \mathrm{lbf} / \mathrm{ft}^{2}=6.894757 \mathrm{kPa}$ |
|  | $=760 \mathrm{mmHg} \text { at } 0^{\circ} \mathrm{C}$ | $1 \mathrm{alm}=14.696 \mathrm{psia}=29.92 \mathrm{inHg} \text { at } 30^{\circ} \mathrm{F}$ |
|  | $\begin{gathered} =1.03323 \mathrm{kgf} / \mathrm{cm}^{2} \\ 1 \mathrm{mmHg}=0.1333 \mathrm{kPa} \end{gathered}$ | $1 \mathrm{inHg}=3.387 \mathrm{kPa}$ |
| Specific beat | $\begin{aligned} 1 \mathrm{~kJ} / \mathrm{kg} \cdot{ }^{\circ} \mathrm{C} & =1 \mathrm{~kJ} / \mathrm{kg} \cdot \mathrm{~K} \\ & =1 \mathrm{~J} / \mathrm{g} \cdot{ }^{\circ} \mathrm{C} \end{aligned}$ | $1 \mathrm{Btu} / \mathrm{lbm} \cdot{ }^{\circ} \mathrm{F}=4.1868 \mathrm{~kJ} / \mathrm{kg} \cdot{ }^{\circ} \mathrm{C}$ |
|  |  | $1 \mathrm{Btu} / \mathrm{lbmot} \cdot \mathrm{R}=4.1868 \mathrm{~kJ} / \mathrm{kmol} \cdot \mathrm{K}$ |
|  |  | $\begin{aligned} 1 \mathrm{~kJ} / \mathrm{kg} \cdot{ }^{\circ} \mathrm{C} & =0.23885 \mathrm{Btu} / \mathrm{lbm} \cdot{ }^{\circ} \mathrm{F} \\ & =0.23885 \mathrm{Btu} / \mathrm{lbm} \cdot \mathrm{R} \end{aligned}$ |
| Specific volume | $\begin{aligned} 1 \mathrm{~m}^{3} / \mathrm{kg} & =1000 \mathrm{~L} / \mathrm{kg} \\ & -=10000 \mathrm{bH} / \mathrm{g} \end{aligned}$ | $1 \mathrm{~m}^{1} / \mathrm{kg}=16.02 \mathrm{ft}^{3} / \mathrm{lbm}$ |
|  |  | I $\mathrm{ft}^{7} / \mathrm{lbm}=0.062428 \mathrm{~m}^{3} / \mathrm{kg}$ |
| Temperature |  | $T(\mathrm{R})-T(\mathrm{~F})+4.59 .67=1.87(\mathrm{~K})$ |
|  | $\Delta T(\mathrm{~K})=\Delta T\left({ }^{\circ} \mathrm{C}\right)$ | $T\left({ }^{\circ} \mathrm{F}\right)=1.8 T\left({ }^{\circ} \mathrm{C}\right)+.32$ |
|  |  | $\Delta T\left({ }^{\circ} \mathrm{F}\right)=\Delta T(\mathrm{R})=1.8 * \Delta T(\mathrm{~K})$ |
| Thermal conductivity | $1 \mathrm{~W} / \mathrm{m} \cdot{ }^{\circ} \mathrm{C}=1 \mathrm{~W} / \mathrm{m} \cdot \mathrm{K}$ | $1 \mathrm{~W} / \mathrm{mm} \cdot{ }^{\circ} \mathrm{C}=0.57782 \mathrm{Btu} / \mathrm{h} \cdot \mathrm{ft} \cdot{ }^{\circ} \mathrm{F}$ |
| Thermal resistance | $1{ }^{\circ} \mathrm{C} / \mathrm{W}-1 \mathrm{~K} / \mathrm{W}$ | $1 \mathrm{~K} / \mathrm{W}=0.52750^{\circ} \mathrm{F} / \mathrm{h} \cdot \mathrm{Btu}$ |
| Velocity | $1 \mathrm{~m} / \mathrm{s}=3.60 \mathrm{~km} / \mathrm{h}$ | $1 \mathrm{~m} / \mathrm{s}=3.2808 \mathrm{ft} / \mathrm{s}=2.237 \mathrm{mi} / \mathrm{h}$ |
|  |  | $1 \mathrm{mi} / \mathrm{h}=1.46667 \mathrm{ft} / \mathrm{s}$ |
|  |  | $1 \mathrm{mi} / \mathrm{h}=1.609 \mathrm{~km} / \mathrm{h}$ |
| Viscosity, dynamic | $1 \mathrm{~kg} / \mathrm{m} \cdot \mathrm{s}-1 \mathrm{~N} \cdot \mathrm{~s} / \mathrm{m}^{2}-1 \mathrm{~Pa} \cdot \mathrm{~s}=10$ poise | $\begin{aligned} 1 \mathrm{~kg} / \mathrm{m} \cdot \mathrm{~s} & =2419.1 \mathrm{lbf} / \mathrm{ft} \cdot \mathrm{~h} \\ & =0.020886 \mathrm{lbf} \cdot \mathrm{~s} / \mathrm{tt}^{2} \\ & =5.8016 \times 10^{6} \mathrm{lbf} \cdot \mathrm{~h} / \mathrm{ft}^{2} \end{aligned}$ |
| Viscosity, kinematic | $\begin{aligned} & 1 \mathrm{~m}^{2} / \mathrm{s}=10^{4} \mathrm{~cm}^{2} / \mathrm{s} \\ & 1 \text { stoke }=1 \mathrm{~cm}^{2} / \mathrm{s}=10^{1} \mathrm{~m}^{2} / \mathrm{s} \end{aligned}$ | $\begin{aligned} & 1 \mathrm{~m}^{2} / \mathrm{s}=10.764 \mathrm{ft}^{2} / \mathrm{s}=3.875 \times 10^{4} \mathrm{ft}^{2} / \mathrm{h} \\ & 1 \mathrm{~m}^{2} / \mathrm{s}=10.764 \mathrm{ft}^{2} / \mathrm{s} \end{aligned}$ |
| Volune | $1 \mathrm{~m}^{3}=1000 \mathrm{~L}=10^{4} \mathrm{~cm}^{3}$ (cc) | $\begin{aligned} 1 \mathrm{~m}^{3} & =6.1024 \times 10^{4} \mathrm{in}^{3}=35.315 \mathrm{ft}^{3} \\ & =264.17 \mathrm{gal}(\mathrm{U} . \mathrm{S}) \end{aligned}$ |
|  |  | 1 U.S. gallon $=231 \mathrm{in}^{7}=3.7854 \mathrm{~L}$ <br> 111 ounce $=29.5735 \mathrm{~cm}^{3}=0.0295735 \mathrm{~L}$ |
|  |  | 1 U.S. gallon $=12811$ ounces |

FIGURE A-27
The Moody chart for the friction factor for fully developed flow in circular tubes.

