
C++ Language Summary
Version 4.1 (ANSI/ISO Standard/STL Version/with Classes)

Last updated 2/25/04
Portions copyright Charles S. Tritt, Ph.D.

This document provides neither a complete nor rigorous description of the C++ language. It
does, however, describe the features of the language that are most useful to engineers and
scientists. These frequently used aspects of the language are described below:

Program Structure Built in Types and Identifiers
Common Operators Control Constructs
“Advanced” Class Syntax Microsoft MFC Notes
Stream I/O Stream Manipulators
Stream Member Functions IOS Format Flags
IOS File Access Flags Character Escape Sequences
String Class Member Functions and
Operators

Vector Class Member Functions and
Operators

Suffixes for Numerical Constants Simple Class and Structure Definitions
Reserved Words Operator Precedence and Associativity Chart
Standard Libraries Bibliographic References

Program Structure

Any text on a line after a // symbol is ignored (used for comments). Long (multi-line comments
can be placed between /* and */ symbols.

Use consistent indentation to indicate intended program structure.

Functions must be declared before use but can be defined after use. Modern C/C++ style is to put
all function definitions after main() with all declarations before main() as prototypes. An
alternate style eliminates the need for separate function declarations by placing all definitions
before main() and their first use. Function definitions can not be nested. Modern style also
involves placing declarations in header files (.h or no extensions) and definitions
(implementations) in source code (.cpp) files.

Return to Table of Contents

Built in Types and References

Identifiers (names) are case sensitive and can be of any length but typically only the first 31
characters are significant. They must start with a letter (including _) and may contain letters and
numbers. Objects names are generally all lower case. Class names generally start with an upper
case letter. Constants are generally in all upper case.

Page 1 of 14

C++ Language Summary

Version 4.1 (ANSI/ISO Standard/STL
Version/with Classes)

Last updated 2/25/04

Portions copyright Charles S. Tritt, Ph.D.

This document provides neither a complete nor rigorous description of the
C++ language. It does, however, describe the features of the language that are
most useful to engineers and scientists. These frequently used aspects of the
language are described below:

		
 Program
 Structure[bookmark: toc]

 		
 Built in Types and Identifiers

		
 Common Operators

 		
 Control Constructs

		
 “Advanced” Class Syntax

 		
 Microsoft MFC Notes

		
 Stream I/O

 		
 Stream Manipulators

		
 Stream Member Functions

 		
 IOS Format Flags

		
 IOS File Access Flags

 		
 Character Escape Sequences

		
 String Class Member Functions and
 Operators

 		
 Vector Class Member Functions and
 Operators

		
 Suffixes for Numerical Constants

 		
 Simple Class and Structure
 Definitions

		
 Reserved Words

 		
 Operator Precedence and Associativity Chart

		
 Standard Libraries

 		
 Bibliographic References

[bookmark: progstructure]Program Structure

Any text on a line after a //
symbol is ignored (used for comments). Long (multi-line comments can be placed
between /* and */ symbols.

Use consistent indentation to indicate intended program structure.

Functions must be declared before use but can be defined after use. Modern
C/C++ style is to put all function definitions after main()
with all declarations before main() as prototypes. An alternate style
eliminates the need for separate function declarations by placing all
definitions before main() and their
first use. Function definitions can not be nested. Modern style also involves
placing declarations in header files (.h or no extensions) and definitions
(implementations) in source code (.cpp) files.

Return to Table of Contents [bookmark: types]

Built in Types and References

Identifiers (names) are case sensitive and can be of any length but
typically only the first 31 characters are significant. They must start with a
letter (including _) and may contain letters and numbers. Objects names are
generally all lower case. Class names generally start with an upper case
letter. Constants are generally in all upper case.

Variables can be declared anywhere before they are used use. I usually
collect all declarations at the top of each function so that they are easy to
find. Some C++ programmers declare variables just before they are used. At any
rate comments should be included with all non-trivial variable declarations
describing significance, use and units (if any).

Use square brackets to indicate arrays. Arrays are declared with the number
of storage locations indicated, but array element references start at zero.
Modern C++ compilers support the string and vector container classes (declared
in the string and vector
include files, respectively). These container classes provide significant
advantages over the use of arrays.

Return to Table of Contents

[bookmark: classsyntax]Sample Circle/Cylinder Class Syntax

// A derived class declaration

Class Cylinder: public Circle

{

protected:

 double length; // need data member.

public:

 Cylinder(double r = 1.0, double l = 1.0): Circle(r),length(l){}

 virtual double calcVol() const; // Returns the volume.

};

// Partial class definition (implementation)

double Cylinder::calcVol(void) const

{

 return (length*Circle::calcArea()); // Call base class function.

}

Return to Table of Contents

[bookmark: mfcnotes]Microsoft MFC Notes

Visual
C++ Application = Visual Part (user interface) + Functional Part (procedural
code)

Application types: Dialog,
Single Document Interface (SDI), Multiple Document Interface (MDI).

Common
MFC Control Types: Check Box, Command Button, Edit Box, Group Box, Label
(static text), Line and Radio Button

Message
Box syntax:

MessageBox("Content: Hello World!", "Title: Sample", MB_ICONQUESTION);

Message
box icon types: MB_ICON… QUESTION, EXCLAMATION, INFORMATION and STOP.
Other message box named constants: MB_...
OK, OKCANCEL, YESNO, YESNOCANCEL, etc. Message box return
values: IDOK, IDYES, IDNO, IDCANCEL, etc.

Useful
MFCWnd Class Member Functions

		
 UpdateData()

 		
 UpdateData(TRUE) retrieves the
 data from each control by copying its value into the control’s associated Value category member variable. UpdateData(FALSE) copies
 values from each Value category
 member variable to their corresponding control for display.

		
 EnableWindow()

 		
 EnableWindow(TRUE) enables the corresponding
 control. The control is specified by prefixing a Control category member variable to the function. EnableWindow(FALSE) disables the
 corresponding control.

		
 SetFocus()

 		
 SetFocus(TRUE) gives the
 corresponding control input focus. The control is specified by prefixing a Control category member variable to
 the function. SetFocus(TRUE) removes input
 focus from the corresponding control.

Return to Table of Contents

Built
in Types -

		
 void

 		
 A generic "nontype."

		
 bool

 		
 Boolean type (usually 1 byte), i.e., true (usually
 non-zero) or false (usually 0).

		
 char

 		
 Characters (usually 1 byte).

		
 int

 		
 Integers (2 or 4 byte).

		
 float

 		
 Single precision real (floating point) numbers. Usually 4 bytes
 and not typically used.

		
 double

 		
 Double precision real (floating point) numbers. Usually 8
 bytes and typically used.

Type
Modifiers -

		
 unsigned

 		
 Doesn’t use sign bit (assumes int
 if base type is omitted).

		
 long

 		
 May have twice as many bytes as base type (assumes int if base type is omitted).

		
 short

 		
 May have half as many bytes as base type (assumes int if base type is omitted).

		
 const

 		
 Constant (values can’t be changed during execution).

Return to Table of Contents

[bookmark: operators]Common Operators

Assignment:
=

Increment and decrement: ++
(pre or post fix) and --
(pre or post fix)

Arithmetic: +, -, *,
/ and % (integer remainder)

Relational: == (equality), != (inequality), <, >,
<= and >=

Boolean: && (and), || (or) and ! (not) (and, or and not are used in ANSI/ISO
C++)

Bitwise: & (and), | (or), ^ (xor), ~ (not), << (shift left) and >> (shift right)

Return to Table of Contents [bookmark: control]

Control Constructs

Zero
is considered false and nonzero is considered true in conditions.
Statements end with semicolons, i.e. ;’s. A block is a statement or two or more statements
enclosed in braces, i.e. { and }. A block can be used
anywhere a statement can be used. Statements and blocks can be spread across
multiple lines.

Selection
(if and switch constructs):

conditional expression ? expression1 : expression2

if (condition) block1 [else block2]

if (condition) block1 else if (condition) block2 ... [else block3]

switch (expression)

{ case value1: [block1 [break;]]

 ...

 case valuen: [blockn [break;]]

 default: [blockn+1 [break;]]

}

Repetition
(while and for constructs):

while (condition) block

do (block) while (condition);

while {…; if (condition) break; …;}

for (initialize; test; update) block;

which is equivalent to:

initialize;

while (test)

{ block;

 update;

}

Return to Table of Contents [bookmark: libraries]

Standard Libraries

Many commonly used features of C and C++ are
defined in the standard libraries. There is massive overlap between the C
libraries (declared in include files with names like <libname.h> and C++ libraries
(declared in include files with names like <libname>).
The C++ libraries generally contain the same functions as the corresponding C
libraries but with these functions placed in the std
namespace. As a result, the following line generally should be placed
immediately following the inclusion of the C++ libraries:

using namespace std;

The following table lists the new C++ names, the
old C/C++ names and some commonly used functions of the most popular standard
libraries.

		
 New C++ Name

 		
 Old C/C++ Name

 		
 Use and functions

 		
 iostream

 		
 iostream.h

 		
 Defines insertion (<<)
 and extraction (>>) operators and creates the global
 stream objects like cin
 and cout. See also, Stream Member Functions

		
 iomanip

 		
 iomanip.h

 		
 Provides a variety of steam formatting and manipulation
 tools. See also, Stream Manipulators section.

		
 fstream

 		
 fstream.h

 		
 Required for file I/O operations. See also, Stream Member Functions.

		
 cmath

 		
 math.h

 		
 Provides a wide range of special math functions. These include
 the trigonometric functions (with angles expressed in radians), exp(double x), log(double x), log10(double x), pow(double base, double power),
 sqrt(double x), fabs(double x) and fmod(double numerator, double denominator).

		
 cstdlib

 		
 stdlib.h

 		
 Miscellaneous stuff. Including the void srand(int seed)
 and int rand() pseudo-random random number
 functions, the int system(const char command[])
 system command function and the exit(int exit_code) program exit function. Using the exit function
 in main generates a warning message in MSVC++ 6.0.

		
 cassert

 		
 assert.h

 		
 Provides the assert error handling mechanism. This has
 largely been replace by the exception mechanism in
 bigger programs, but is still useful in smaller ones.

		
 string

 		
 None

 		
 Provides the string class. Note that <string> is completely
 different than the old <string.h> library (now <cstring.h>. See also, String Class
 Member Functions and Operators

		
 vector

 		
 vector.h

 		
 Provides the Standard Template Library (STL)
 implementation of a 1-dimensional, random access sequence of items.
 Generally replaces the use of 1-dimensional C/C++ arrays. See also, Vector Class Member Functions and Operators and the
 MSVC++ 6.0 <valarray>> include file.

		
 ctime

 		
 time.h

 		
 Types and functions associated with calendar and time
 operations. Includes both processor and actual time and date functions.

		
 complex

 		
 None

 		
 Provides a template class for storing and manipulating complex
 numbers.

Return to Table of Contents [bookmark: strings]

String Class Member Functions and Operators

Selected String Functions -

		
 string(int size)

 		
 Constructor. Argument size
 is optional but recommended. Note lower case s.

 		
 int .length()

 		
 Returns the length of
 the string.

 		
 string .substr(int start, int size)

 		
 Returns the substring
 starting at location start of length size.

 		
 string& .insert(int n, string s)

 		
 Inserts a copy of s into string starting at position n. The rest of the original string is shifted
 right.

 		
 string& .erase(int from,
 int to)

 		
 Removes characters from
 position from to through position to from the string. Moves the
 rest of the string to the left. Returns the modified string.

 		
 int .find(string
 ss)

 		
 Returns the starting
 position of the first occurrence of substring ss.

 		
 getline(istream is, string s)

 		
 Places next line from is
 into s. The string extractor (>>) only
 gets "words". Not actually a member function.

String operators include: [],
=,
>>,
<<,
+,
==, !=,
<,
<=,
>
and >=.

String elements are numbered starting at 0.
Constructor/assignment example: string name = "John Doe";

Return to Table of Contents [bookmark: vectors]

Vector Class Member Functions and Operators

Selected Vector Functions -

		
 vector(int size)

 		
 Constructor.
 Argument size is optional but recommended. Note lower case v.

 		
 int .size()

 		
 Returns the number of
 elements in the vector.

 		
 bool .empty()

 		
 Returns true only if there
 are no elements in the vector.

 		
 void .push_back(Vector_type value)

 		
 Puts value into
 a new storage location created at the end of the vector.

 		
 void .pop_back()

 		
 Removes the last
 element from the vector and discards it.

 		
 void .resize(int newsize, Vector_type
 value)

 		
 Resizes the vector. If newsize is less than the current size the vector
 is truncated. If newsize is larger than the
 current size the vector is enlarged by adding new elements after the last
 existing elements. These new elements are set to value if one is
 provided.

 		
 iterator .begin()

 		
 Returns an iterator that points to the
 first element of the vector.

 		
 iterator .end()

 		
 Returns an iterator that points immediately
 beyond the last element of the vector.

 		
 int .insert(iterator location, Vector_type
 value)

 		
 Inserts value
 into the vector at the specified location and returns the location.

 		
 int .erase(iterator location)

 		
 Removes the element at location
 from the vector and returns the position of the removal.

 		
 void .clear()

 		
 Removes all elements
 from a vector.

 		
 void .swap(vector v)

 		
 Interchanges the
 elements of the current vector and v. This operation is generally more
 efficient than an individual swapping of elements.

Vector operators include: [],
=,
==, !=,
<,
<=,
>
and >=.

Vector elements are numbered starting at 0. Iterators can be created by adding element numbers to the
result of the .begin() member function. Constructor
example: vector<double> a(MAX_SIZE,
0.0);

Return to Table of Contents [bookmark: streams]

Stream I/O

Stream Operators (defined in <iostream>)

		
 ostream&
 << const object

 		
 Stream insertion.

 		
 istream&
 >> object&

 		
 Stream extraction.

Stream Objects Created and Opened Automatically

		
 istream& cin

 		
 Standard console input
 (keyboard).

 		
 ostream& cout

 		
 Standard console output
 (screen).

 		
 ostream& cprn

 		
 Standard printer
 (LPT1?).

 		
 ostream& cerr

 		
 Standard error output
 (screen?).

 		
 ostream& clog

 		
 Standard log (screen?).

 		
 ostream& caux

 		
 Standard auxiliary
 (screen?).

Stream Classes (requires <fstream>
and/or <strstream>)

		
 fstream

 		
 File I/O class.

 		
 ifstream

 		
 Input
 file class.

 		
 istrstream

 		
 Input string class.

 		
 ofstream

 		
 Output
 file class.

 		
 ostrstream

 		
 Output string class.

 		
 strstream

 		
 String I/O class.

Return to Table of Contents

[bookmark: manipulators]Stream Manipulators (defined in <iomanip>)

		
 dec

 		
 Sets base 10 integers.

 		
 endl

 		
 Sends a new line character.

 		
 ends

 		
 Sends a null (end of string) character.

 		
 flush

 		
 Flushes an output stream.

 		
 fixed

 		
 Sets fixed real number notation.

 		
 hex

 		
 Sets base 16 integers.

 		
 oct

 		
 Sets base 8 integers.

 		
 ws

 		
 Discard white space on input.

		
 setbase(int)

 		
 Sets integer
 conversion base (0, 8, 10 or 16 where 0 sets base 10).

 		
 setfill(int)

 		
 Sets fill
 character.

 		
 setprecision(int)

 		
 Sets precision.

 		
 setw(int)

 		
 Sets field width.

		
 resetiosflags(long)

 		
 Clears format
 state as specified by argument.

 		
 setiosflags(long)

 		
 Sets format state
 as specified by argument.

Return to Table of Contents

[bookmark: streamfunctions]Stream Member Functions

		
 void .close()

 		
 Closes the I/O
 object.

 		
 int .eof()

 		
 Returns a
 nonzero value (true) if the end of the stream has been reached. Use after fail() returns true.

 		
 char .fill(char fill_ch
 | void)

 		
 Sets or returns
 the fill character.

 		
 int
 .fail()

 		
 Returns a
 nonzero value (true) if the last I/O operation on the stream failed.

 		
 istream&
 .get(int ch)

 		
 Gets a
 character as an int so EOF (-1) is a possible
 value.

 		
 istream&
 .getline(char* ch_string,
 int maxsize, char delimit)

 		
 Get a line into
 the ch_string buffer with maximum length of maxsize and ending with delimiter delimit.

 		
 istream&
 .ignore(int length[, int
 delimit])

 		
 Reads and
 discards the number of characters specified by length from the stream
 or until the character specified by delimit (default EOF) is found.

 		
 iostream&
 .open(char* filename, int mode)

 		
 Opens the filename
 file in the specified mode.

 		
 int
 .peek();

 		
 Returns the
 next character in the stream without removing it from the stream.

 		
 int
 .precision(int prec
 | void)

 		
 Sets or returns
 the floating point precision.

 		
 ostream&
 .put(char ch)

 		
 Puts the
 specified character into the stream.

 		
 istream&
 .putback(char ch)

 		
 Puts the
 specified character back into the stream.

 		
 istream&
 .read(char* buf, int
 size)

 		
 Sends size
 raw bytes from the buf buffer to the stream.

 		
 long .setf(long flags
 [, long mask])

 		
 Sets (and
 returns) the specified ios flag(s).

 		
 long .unsetf(long flags)

 		
 Clears the
 specified ios flag(s).

 		
 int
 .width(int width | void)

 		
 Sets or returns
 the current output field width.

 		
 ostream&
 .write(const char* buf, int
 size)

 		
 Sends size
 raw bytes from buf to the stream.

Return to Table of Contents

[bookmark: iosformat]IOS Format Flags (ios::x)

		
 dec

 		
 Use base 10.

 		
 fixed

 		
 Output float values
 in fixed point format (use the resetiosflags(ios::floatfield) manipulator or
 the unsetf(ios::floatfield)
 function to reset to default format).

 		
 hex

 		
 Use base 16.

 		
 internal

 		
 Distribute fill
 character between sign and value.

 		
 left

 		
 Align left.

 		
 oct

 		
 Use base 8.

 		
 right

 		
 Align right.

 		
 scientific

 		
 Outputs float values
 in scientific format (use the resetiosflags(ios::floatfield) manipulator or
 the unsetf(ios::floatfield)
 function to reset to default format).

 		
 showbase

 		
 Encodes base on
 integer output.

 		
 showpoint

 		
 Include decimal point
 in output.

 		
 showpos

 		
 Include positive (+)
 sign in output.

 		
 skipws

 		
 Skip white space
 (spaces and tabs).

 		
 uppercase

 		
 Forces upper case
 output.

Return to Table of Contents

[bookmark: iosaccess]IOS File Access Flags (ios::x)

		
 app

 		
 Open in append mode.

 		
 ate

 		
 Open and seek to end
 of file.

 		
 in

 		
 Open in input mode.

 		
 nocreate

 		
 Fail if file doesn't
 already exist.

 		
 noreplace

 		
 Fail if file already
 exists.

 		
 out

 		
 Open in output mode.

 		
 trunc

 		
 Open and truncate to
 zero length.

 		
 binary

 		
 Open as a binary
 stream.

Return to Table of Contents

[bookmark: classdefs]Class and Structure Definitions

class Name

{

public:

member_function1
declaration [const];

member_function2 declaration;

...

private:

data_member1;

data_member2;

...

};

[inline] type Class_name::member_function_name(arguments)
[const]

{

// code

};

The inclusion of the const modifier
indicates that the function does not modify the object on which it operates.
This restriction is enforced by the compiler.

Return to Table of Contents

[bookmark: suffixes]Suffixes for Numerical Constants

Integer constants default to the smallest integer
type that can hold their value. Otherwise, the following suffixes can be used
(alone or together):

		
 u

 		
 Unsigned

 		
 l or L

 		
 Long

Floating point constants default to type double.
Otherwise, the following suffixes can be used:

		
 f

 		
 Float

 		
 l or L

 		
 Long double

Return to Table of Contents

[bookmark: charescape]Character Escape Sequences

		
 \n

 		
 Newline.

 		
 \t

 		
 Horizontal tab.

 		
 \r

 		
 Carriage return.

 		
 \a

 		
 Alert sound (bell).

 		
 \\

 		
 Outputs a backslash
 character.

 		
 \"

 		
 Outputs a double quote
 character.

Return to Table of Contents

[bookmark: reservedwords]Reserved Words

These words can’t (or at least shouldn’t) be
used for programmer defined symbols (names). I’ve also seen problems with names
like min and max in Visual C++ 6.0. Don’t use words with particular meanings like
one and two for names either.

asm

auto

break

case

catch

char

class

const

continue

default

delete

do

double

else

enum

extern

float

for

friend

goto

if

inlineint

long

new

operator

private

protected

public

register

return

short

signed

sizeof

static

struct

switch

template

this

throw

try

typedef

union

unsigned

virtual

void

volatile

wchar_t

while

 Return to
Table of Contents

[bookmark: precedence]Operator Precedence Chart

This table lists all the C++ operators in order
of non-increasing precedence. An expression involving operators of equal
precedence is evaluated according to the associativity
of the operators.

		
 Operator(s)

 		
 Description(s)

 		
 Associativity

 		
 ::

 		
 Class scope
 resolution (binary)

 		
 left to right

 		
 ::

 		
 Global scope (unary)

 		
 right to left

 		
 ()

 		
 Function call

 		
 left to right

 		
 ()

 		
 Value construction

 		
 left to right

 		
 []

 		
 Array element
 reference

 		
 left to right

 		
 ->

 		
 Pointer to class
 member reference

 		
 left to right

 		
 .

 		
 Class member
 reference

 		
 left to right

 		
 -, +

 		
 Unary minus and plus

 		
 right to left

 		
 >++, --

 		
 Increment and
 decrement

 		
 right to left

 		
 !, ~

 		
 Logical negation and
 one's complement

 		
 right to left

 		
 *, &

 		
 Pointer dereference
 (indirection) and address

 		
 right to left

 		
 sizeof

 		
 Size of an object

 		
 right to left

 		
 (type)

 		
 Type cast (coercion)

 		
 right to left

 		
 new, delete

 		
 Create free store
 object and destroy free store object

 		
 right to left

 		
 >*

 		
 Pointer to member
 selector

 		
 left to right

 		
 *

 		
 Pointer to member selector

 		
 Left to right

 		
 *, /, %

 		
 Multiplication,
 division and modulus (remainder)

 		
 Left to right

 		
 +, -

 		
 Addition and
 subtraction

 		
 Left to right

 		
 <<, >>

 		
 Shift left and shift
 right

 		
 Left to right

 		
 <, <=, >, >=

 		
 Less than, less than
 or equal, greater than, greater than or equal

 		
 Left to right

 		
 ==, !=

 		
 Equality and
 inequality

 		
 Left to right

 		
 &

 		
 Bitwise AND

 		
 Left to right

 		
 ^

 		
 Bitwise XOR

 		
 Left to right

 		
 |

 		
 Bitwise OR

 		
 Left to right

 		
 && or and

 		
 Logical AND

 		
 Left to right

 		
 || or or

 		
 Logical OR

 		
 Left to right

 		
 ? :

 		
 Conditional
 expression

 		
 right to left

 		
 =, *=, /=, %=, +=, =, &=, ^=, |=, >>=,
 <<=

 		
 Assignment

 		
 right to left

 		
 ,

 		
 Comma

 		
 Left to right

Return to Table of Contents

[bookmark: bibliography]C++ References

Jones, R. M. Introduction to MFC Programming
with Visual C++. Prentice Hall PTR, 1999.

Bronson, G. J. Program
Development and Design Using C++, 2nd ed. Brooks/Cole Thomson
Learning, 2000.

Bronson, G. J. A First Book
of Visual C++. Brooks/Cole Thomson Learning, 2000.

Horstmann, C. S.
Computing Concepts with C++ Essentials, 2nd ed. John Wiley &
Sons, 1999.

Cohoon, J. P. and J. W. Davidson. C++ Program Design; An Introduction to Programming and Object-Oriented
Design, 2nd ed. McGraw-Hill, 1999.

Deitel, H. M. and P. J. Deitel. C++ How to Program. Prentice Hall, 1994.

Perry, J. E. and H. D.
Levin. An Introduction to Object-Oriented Design in
C++. Addison-Wesley, 1996.

Barclay, K. A. and B. J.
Gordon. C++ Problem Solving and Programming. Prentice Hall, 1994.

Johnsonbaugh, R. and M. Kalin. Object-Oriented Programming in C++. Prentice-Hall,
1995.

Horstmann, C. S.
Mastering Object-Oriented Design in C++. John Wiley &
Sons, 1995.

Charles S. Tritt�
cpplang41.html�

Variables can be declared anywhere before they are used use. I usually collect all declarations at
the top of each function so that they are easy to find. Some C++ programmers declare variables
just before they are used. At any rate comments should be included with all non-trivial variable
declarations describing significance, use and units (if any).

Use square brackets to indicate arrays. Arrays are declared with the number of storage locations
indicated, but array element references start at zero. Modern C++ compilers support the string
and vector container classes (declared in the string and vector include files, respectively).
These container classes provide significant advantages over the use of arrays.

Return to Table of Contents

Sample Circle/Cylinder Class Syntax

// A derived class declaration

Class Cylinder: public Circle
{
protected:
 double length; // need data member.
public:
 Cylinder(double r = 1.0, double l = 1.0): Circle(r),length(l){}
 virtual double calcVol() const; // Returns the volume.
};

// Partial class definition (implementation)

double Cylinder::calcVol(void) const
{
 return (length*Circle::calcArea()); // Call base class function.
}

Return to Table of Contents

Microsoft MFC Notes

Visual C++ Application = Visual Part (user interface) + Functional Part (procedural code)

Application types: Dialog, Single Document Interface (SDI), Multiple Document Interface
(MDI).

Common MFC Control Types: Check Box, Command Button, Edit Box, Group Box, Label
(static text), Line and Radio Button

Page 2 of 14

Message Box syntax:

MessageBox("Content: Hello World!", "Title: Sample",
MB_ICONQUESTION);

Message box icon types: MB_ICON… QUESTION, EXCLAMATION, INFORMATION and
STOP. Other message box named constants: MB_... OK, OKCANCEL, YESNO,
YESNOCANCEL, etc. Message box return values: IDOK, IDYES, IDNO, IDCANCEL, etc.

Useful MFCWnd Class Member Functions

UpdateData()

UpdateData(TRUE) retrieves the data from each control by copying its value
into the control’s associated Value category member variable.
UpdateData(FALSE) copies values from each Value category member variable
to their corresponding control for display.

EnableWindow()
EnableWindow(TRUE) enables the corresponding control. The control is
specified by prefixing a Control category member variable to the function.
EnableWindow(FALSE) disables the corresponding control.

SetFocus()
SetFocus(TRUE) gives the corresponding control input focus. The control is
specified by prefixing a Control category member variable to the function.
SetFocus(TRUE) removes input focus from the corresponding control.

Return to Table of Contents

Built in Types -

void A generic "nontype."
bool Boolean type (usually 1 byte), i.e., true (usually non-zero) or false (usually 0).
char Characters (usually 1 byte).
int Integers (2 or 4 byte).

float Single precision real (floating point) numbers. Usually 4 bytes and not typically
used.

double Double precision real (floating point) numbers. Usually 8 bytes and typically used.

Type Modifiers -

unsigned Doesn’t use sign bit (assumes int if base type is omitted).
long May have twice as many bytes as base type (assumes int if base type is omitted).
short May have half as many bytes as base type (assumes int if base type is omitted).
const Constant (values can’t be changed during execution).

Return to Table of Contents

Page 3 of 14

Common Operators

Assignment: =
Increment and decrement: ++ (pre or post fix) and -- (pre or post fix)
Arithmetic: +, -, *, / and % (integer remainder)
Relational: == (equality), != (inequality), <, >, <= and >=
Boolean: && (and), || (or) and ! (not) (and, or and not are used in ANSI/ISO C++)
Bitwise: & (and), | (or), ^ (xor), ~ (not), << (shift left) and >> (shift right)

Return to Table of Contents

Control Constructs

Zero is considered false and nonzero is considered true in conditions. Statements end with
semicolons, i.e. ;’s. A block is a statement or two or more statements enclosed in braces, i.e. {
and }. A block can be used anywhere a statement can be used. Statements and blocks can be
spread across multiple lines.

Selection (if and switch constructs):

conditional expression ? expression1 : expression2

if (condition) block1 [else block2]

if (condition) block1 else if (condition) block2 ... [else
block3]

switch (expression)
{ case value1: [block1 [break;]]
 ...
 case valuen: [blockn [break;]]
 default: [blockn+1 [break;]]
}

Repetition (while and for constructs):

while (condition) block

do (block) while (condition);

while {…; if (condition) break; …;}

for (initialize; test; update) block;

which is equivalent to:
initialize;
while (test)
{ block;
 update;
}

Page 4 of 14

Return to Table of Contents

Standard Libraries

Many commonly used features of C and C++ are defined in the standard libraries. There is
massive overlap between the C libraries (declared in include files with names like <libname.h>
and C++ libraries (declared in include files with names like <libname>). The C++ libraries
generally contain the same functions as the corresponding C libraries but with these functions
placed in the std namespace. As a result, the following line generally should be placed
immediately following the inclusion of the C++ libraries:

using namespace std;

The following table lists the new C++ names, the old C/C++ names and some commonly used
functions of the most popular standard libraries.

New C++ Name Old C/C++ Name Use and functions
iostream iostream.h Defines insertion (<<) and extraction (>>) operators and

creates the global stream objects like cin and cout. See
also, Stream Member Functions

iomanip iomanip.h Provides a variety of steam formatting and manipulation
tools. See also, Stream Manipulators section.

fstream fstream.h Required for file I/O operations. See also, Stream Member
Functions.

cmath math.h Provides a wide range of special math functions. These
include the trigonometric functions (with angles expressed
in radians), exp(double x), log(double x),
log10(double x), pow(double base, double power),
sqrt(double x), fabs(double x) and fmod(double
numerator, double denominator).

cstdlib stdlib.h Miscellaneous stuff. Including the void srand(int seed)
and int rand() pseudo-random random number functions,
the int system(const char command[]) system
command function and the exit(int exit_code) program exit
function. Using the exit function in main generates a
warning message in MSVC++ 6.0.

cassert assert.h Provides the assert error handling mechanism. This has
largely been replace by the exception mechanism in bigger
programs, but is still useful in smaller ones.

string None Provides the string class. Note that <string> is completely
different than the old <string.h> library (now <cstring.h>.
See also, String Class Member Functions and Operators

Page 5 of 14

vector vector.h Provides the Standard Template Library (STL)
implementation of a 1-dimensional, random access
sequence of items. Generally replaces the use of 1-
dimensional C/C++ arrays. See also, Vector Class Member
Functions and Operators and the MSVC++ 6.0 <valarray>>
include file.

ctime time.h Types and functions associated with calendar and time
operations. Includes both processor and actual time and
date functions.

complex None Provides a template class for storing and manipulating
complex numbers.

Return to Table of Contents

String Class Member Functions and Operators

Selected String Functions -

string(int size) Constructor. Argument size is optional but recommended. Note
lower case s.

int .length() Returns the length of the string.
string .substr(int
start, int size)

Returns the substring starting at location start of length size.

string& .insert(int n,
string s)

Inserts a copy of s into string starting at position n. The rest of the
original string is shifted right.

string& .erase(int
from, int to)

Removes characters from position from to through position to from
the string. Moves the rest of the string to the left. Returns the
modified string.

int .find(string ss) Returns the starting position of the first occurrence of substring ss.
getline(istream is,
string s)

Places next line from is into s. The string extractor (>>) only gets
"words". Not actually a member function.

String operators include: [], =, >>, <<, +, ==, !=, <, <=, > and >=.

String elements are numbered starting at 0. Constructor/assignment example: string name =
"John Doe";

Return to Table of Contents

Page 6 of 14

Vector Class Member Functions and Operators

Selected Vector Functions -

vector(int size) Constructor. Argument size is optional but recommended. Note
lower case v.

int .size() Returns the number of elements in the vector.
bool .empty() Returns true only if there are no elements in the vector.
void
.push_back(Vector_type
value)

Puts value into a new storage location created at the end of the
vector.

void .pop_back() Removes the last element from the vector and discards it.
void .resize(int
newsize, Vector_type
value)

Resizes the vector. If newsize is less than the current size the vector
is truncated. If newsize is larger than the current size the vector is
enlarged by adding new elements after the last existing elements.
These new elements are set to value if one is provided.

iterator .begin() Returns an iterator that points to the first element of the vector.
iterator .end() Returns an iterator that points immediately beyond the last element

of the vector.
int .insert(iterator
location, Vector_type
value)

Inserts value into the vector at the specified location and returns the
location.

int .erase(iterator
location)

Removes the element at location from the vector and returns the
position of the removal.

void .clear() Removes all elements from a vector.
void .swap(vector v) Interchanges the elements of the current vector and v. This

operation is generally more efficient than an individual swapping
of elements.

Vector operators include: [], =, ==, !=, <, <=, > and >=.

Vector elements are numbered starting at 0. Iterators can be created by adding element numbers
to the result of the .begin() member function. Constructor example: vector<double>
a(MAX_SIZE, 0.0);

Return to Table of Contents

Stream I/O

Stream Operators (defined in <iostream>)

ostream& << const object Stream insertion.
istream& >> object& Stream extraction.

Page 7 of 14

Stream Objects Created and Opened Automatically

istream& cin Standard console input (keyboard).
ostream& cout Standard console output (screen).
ostream& cprn Standard printer (LPT1?).
ostream& cerr Standard error output (screen?).
ostream& clog Standard log (screen?).
ostream& caux Standard auxiliary (screen?).

Stream Classes (requires <fstream> and/or <strstream>)

fstream File I/O class.
ifstream Input file class.
istrstream Input string class.
ofstream Output file class.
ostrstream Output string class.
strstream String I/O class.

Return to Table of Contents

Stream Manipulators (defined in <iomanip>)

setbase(int) Sets integer conversion base (0, 8, 10 or 16 where 0 sets base 10).
setfill(int) Sets fill character.
setprecision(int) Sets precision.
setw(int) Sets field width.

dec Sets base 10 integers.
endl Sends a new line character.
ends Sends a null (end of string) character.
flush Flushes an output stream.
fixed Sets fixed real number notation.
hex Sets base 16 integers.
oct Sets base 8 integers.
ws Discard white space on input.

resetiosflags(long) Clears format state as specified by argument.
setiosflags(long) Sets format state as specified by argument.

Return to Table of Contents

Page 8 of 14

Stream Member Functions

void .close() Closes the I/O object.
int .eof() Returns a nonzero value (true) if the end of the stream has

been reached. Use after fail() returns true.
char .fill(char fill_ch |
void)

Sets or returns the fill character.

int .fail() Returns a nonzero value (true) if the last I/O operation on
the stream failed.

istream& .get(int ch) Gets a character as an int so EOF (-1) is a possible value.
istream& .getline(char*
ch_string, int maxsize, char
delimit)

Get a line into the ch_string buffer with maximum length of
maxsize and ending with delimiter delimit.

istream& .ignore(int
length[, int delimit])

Reads and discards the number of characters specified by
length from the stream or until the character specified by
delimit (default EOF) is found.

iostream& .open(char*
filename, int mode)

Opens the filename file in the specified mode.

int .peek(); Returns the next character in the stream without removing it
from the stream.

int .precision(int prec |
void)

Sets or returns the floating point precision.

ostream& .put(char ch) Puts the specified character into the stream.
istream& .putback(char ch) Puts the specified character back into the stream.
istream& .read(char* buf,
int size)

Sends size raw bytes from the buf buffer to the stream.

long .setf(long flags [,
long mask])

Sets (and returns) the specified ios flag(s).

long .unsetf(long flags) Clears the specified ios flag(s).
int .width(int width | void) Sets or returns the current output field width.
ostream& .write(const char*
buf, int size)

Sends size raw bytes from buf to the stream.

Return to Table of Contents

IOS Format Flags (ios::x)

dec Use base 10.
fixed Output float values in fixed point format (use the resetiosflags(ios::floatfield)

manipulator or the unsetf(ios::floatfield) function to reset to default format).
hex Use base 16.
internal Distribute fill character between sign and value.

Page 9 of 14

left Align left.
oct Use base 8.
right Align right.
scientific Outputs float values in scientific format (use the resetiosflags(ios::floatfield)

manipulator or the unsetf(ios::floatfield) function to reset to default format).
showbase Encodes base on integer output.
showpoint Include decimal point in output.
showpos Include positive (+) sign in output.
skipws Skip white space (spaces and tabs).
uppercase Forces upper case output.

Return to Table of Contents

IOS File Access Flags (ios::x)

app Open in append mode.
ate Open and seek to end of file.
in Open in input mode.
nocreate Fail if file doesn't already exist.
noreplace Fail if file already exists.
out Open in output mode.
trunc Open and truncate to zero length.
binary Open as a binary stream.

Return to Table of Contents

Class and Structure Definitions

class Name
{
public:

member_function1 declaration [const];
member_function2 declaration;
...

private:

data_member1;
data_member2;
...

Page 10 of 14

};

[inline] type Class_name::member_function_name(arguments) [const]
{

// code

};

The inclusion of the const modifier indicates that the function does not modify the object on
which it operates. This restriction is enforced by the compiler.

Return to Table of Contents

Suffixes for Numerical Constants

Integer constants default to the smallest integer type that can hold their value. Otherwise, the
following suffixes can be used (alone or together):

u Unsigned
l or L Long

Floating point constants default to type double. Otherwise, the following suffixes can be used:

f Float
l or L Long double

Return to Table of Contents

Character Escape Sequences

\n Newline.
\t Horizontal tab.
\r Carriage return.
\a Alert sound (bell).
\\ Outputs a backslash character.
\" Outputs a double quote character.

Return to Table of Contents

Page 11 of 14

Reserved Words

These words can’t (or at least shouldn’t) be used for programmer defined symbols (names). I’ve
also seen problems with names like min and max in Visual C++ 6.0. Don’t use words with
particular meanings like one and two for names either.

asm
auto
break
case
catch
char
class
const
continue
default
delete
do

double
else
enum
extern
float
for
friend
goto
if
inlineint
long
new
operator

private
protected
public
register
return
short
signed
sizeof
static
struct
switch
template
this

throw
try
typedef
union
unsigned
virtual
void
volatile
wchar_t
while

 Return to Table of Contents

Operator Precedence Chart

This table lists all the C++ operators in order of non-increasing precedence. An expression
involving operators of equal precedence is evaluated according to the associativity of the
operators.

Operator(s) Description(s) Associativity
:: Class scope resolution (binary) left to right
:: Global scope (unary) right to left
() Function call left to right
() Value construction left to right
[] Array element reference left to right
-> Pointer to class member reference left to right
. Class member reference left to right
-, + Unary minus and plus right to left
>++, -- Increment and decrement right to left
!, ~ Logical negation and one's complement right to left
*, & Pointer dereference (indirection) and address right to left
sizeof Size of an object right to left
(type) Type cast (coercion) right to left

Page 12 of 14

Operator(s) Description(s) Associativity
new, delete Create free store object and destroy free store object right to left
>* Pointer to member selector left to right
* Pointer to member selector Left to right
*, /, % Multiplication, division and modulus (remainder) Left to right
+, - Addition and subtraction Left to right
<<, >> Shift left and shift right Left to right
<, <=, >, >= Less than, less than or equal, greater than, greater

than or equal
Left to right

==, != Equality and inequality Left to right
& Bitwise AND Left to right
^ Bitwise XOR Left to right
| Bitwise OR Left to right
&& or and Logical AND Left to right
|| or or Logical OR Left to right
? : Conditional expression right to left
=, *=, /=, %=, +=, =,
&=, ^=, |=, >>=, <<=

Assignment right to left

, Comma Left to right

Return to Table of Contents

C++ References

Jones, R. M. Introduction to MFC Programming with Visual C++. Prentice Hall PTR, 1999.

Bronson, G. J. Program Development and Design Using C++, 2nd ed. Brooks/Cole Thomson
Learning, 2000.

Bronson, G. J. A First Book of Visual C++. Brooks/Cole Thomson Learning, 2000.

Horstmann, C. S. Computing Concepts with C++ Essentials, 2nd ed. John Wiley & Sons, 1999.

Cohoon, J. P. and J. W. Davidson. C++ Program Design; An Introduction to Programming and
Object-Oriented Design, 2nd ed. McGraw-Hill, 1999.

Deitel, H. M. and P. J. Deitel. C++ How to Program. Prentice Hall, 1994.

Perry, J. E. and H. D. Levin. An Introduction to Object-Oriented Design in C++. Addison-
Wesley, 1996.

Page 13 of 14

Barclay, K. A. and B. J. Gordon. C++ Problem Solving and Programming. Prentice Hall, 1994.

Johnsonbaugh, R. and M. Kalin. Object-Oriented Programming in C++. Prentice-Hall, 1995.

Horstmann, C. S. Mastering Object-Oriented Design in C++. John Wiley & Sons, 1995.

Page 14 of 14

	C++ Language Summary
	Version 4.1 (ANSI/ISO Standard/STL Version/with Classes)�Las
	Program Structure
	Built in Types and References
	Common Operators
	Control Constructs
	Standard Libraries
	String Class Member Functions and Operators
	Vector Class Member Functions and Operators
	Stream I/O
	Stream Manipulators (defined in <iomanip>)
	Stream Member Functions
	IOS Format Flags (ios::x)
	IOS File Access Flags (ios::x)
	Class and Structure Definitions
	Suffixes for Numerical Constants
	Character Escape Sequences
	Reserved Words
	Operator Precedence Chart
	C++ References

