
Handling Errors -- GE-4200 12/6/2011

Copyright C. S. Tritt, Ph.D. 1

Handling Errors 
(v. 1.0)

C. S. Tritt, Ph.D.
December 6, 2011

Structured Programming
 About 35 years ago, programmers 

discovered that code was much more 
reliable and maintainable, if they 
restricted themselves to simple one-
way in, one-way out loops and function 
calls/returns.

 This works fine until there is a serious 
error deep inside a complex program.

 In these exceptional cases, it is often 
best to provide another way out so the 
error can be correctly dealt with higher 
up in the program.

2

A Panic Button
 All modern programming languages 

provide similar “panic button” 
approaches to dealing with errors.

 This is generally referred to “throwing” 
an exception (or error).

 A thrown exception can be caught 
higher up in the program (outside of 
the loop or selection construct or in a 
calling function) or propagated further 
“up” the “stack”.

 If an exception is not eventually 
caught, the program aborts and an 
error message is displayed.

3



Handling Errors -- GE-4200 12/6/2011

Copyright C. S. Tritt, Ph.D. 2

What Functions Don’t Know
 Most programs are interactive, but 

some still run in “batch mode.”
 Functions typically don’t know the 

context within which they are being 
called, so they can’t know the best way 
to respond to an error.

 The calling program or function is in a 
much better position to know the 
appropriate response.

 Exceptions provide a way for functions 
to communicate errors to callers.

4

To Throw or Not to Throw
 Generally throw exceptions when 

the local code doesn’t know how to 
deal with a situation. 

 Generally throw exceptions under 
circumstances that are serious, rare 
and difficult (or impossible) to 
prevent.

 Acceptable circumstances include 
disks becoming full, programming 
errors (like not enough arguments), 
when a bad file name passed is into 
a function, etc.

5

More Information
 To learn more about the details of 

throwing and catching exceptions, 
see Matlab > User’s Guide > 
Programming Fundamentals > Error 
Handling.

 Be careful. When you catch 
exceptions, you are interfering with 
the Matlab’s normal error reporting 
mechanism and this can cause 
confusion.

6



Handling Errors -- GE-4200 12/6/2011

Copyright C. S. Tritt, Ph.D. 3

What Gets Thrown
 Matlab provides a special type of 

object, MException, for throwing 
exceptions.

 MExceptions have 4 fields:
 identifier
 message
 stack
 cause

 The purpose of the MException
object is to store and transmit 
information about the error.

7

A
na

to
m

y 
of

 a
n 

M
Ex

ce
pt

io
n

8

Identifier
 The identifier may not contain white 

space and always has the format: 
component:mnemonic where:
 component indentifies broadest category 

of the source of the error (like Matlab or 
Simulink). It is often a good idea to start 
all your exceptions with a unique 
identifier (like AcmeSoft).

 mnemonic is provides concise information 
about the error (like TooFewArguments).

 Exceptions are typically differentiated 
based on their identifiers.

9



Handling Errors -- GE-4200 12/6/2011

Copyright C. S. Tritt, Ph.D. 4

Message
 The message is a more complete 

description of the exception and its 
cause. It should be written for 
whoever is expected to see it (the 
original programmer, some other 
programmer or the user).

 It can contain white space.
 An example would be “Field 

'Accounts.clientName' not defined.”

10

Stack
 The stack field of the MException

object identifies the line number, 
function, and filename where the 
error was detected.

 It is populated automatically.
 Information on the entire chain of 

function calls leading to the point 
where the error occurred is stored in 
the stack.

 An example is shown on the next 
slide.

11

Cause
 In large, complex programs, it is 

sometimes useful to include 
additional, higher level information 
to exceptions as they “bubble up” 
through the calling functions.

 Use addCause function to add one 
or more lower level MExceptions to 
a higher level MException before it 
is thrown.

 Note that cause is a cell array.
12



Handling Errors -- GE-4200 12/6/2011

Copyright C. S. Tritt, Ph.D. 5

Sample Code & MException

13

% ForcedError.m
%
% This script forces the generation of an MException.
%
% Created by Dr. C. S. Tritt
% Last revised: 12/5/11.

% Start with a clean workspace and command window.
clear all; clc;

try
% Force an error. 
surf

catch myException
% Do nothing. Just leave myException in the command window.

end

The try-catch block will be 
explained in a few slides.

Resulting Exception

14

>> myException

myException = 

MException

Properties:
identifier: 'MATLAB:nargchk:notEnoughInputs'

message: 'Not enough input arguments.'
cause: {0x1 cell}
stack: [2x1 struct]

Methods

Resulting Stack

15

>> myException.stack(1)

ans = 

file: [1x60 char]
name: 'surf'
line: 50

>> myException.stack(2)

ans = 

file: 
'D:\classes\ge4200\TestCode\ForcedError.m'

name: 'ForcedError'
line: 14



Handling Errors -- GE-4200 12/6/2011

Copyright C. S. Tritt, Ph.D. 6

The error function
 The simplest and oldest way to 

throw an exception is with the error
function. It’s syntax is:

error('msgIdent', 'msgString', v1, v2, ..., vN)

 The error function constructs an 
MException with the provided 
messages, automatically populates 
its stack and throws it.

16

try-catch Blocks
 Errors do not have to be caught.
 Errors that aren’t caught cause the 

program to terminate and display an 
error message and/or code.

 try-catch blocks are use to define 
the response (remedial efforts) of 
the program to particular errors 
occurring in particular parts of 
programs as opposed to termination.

 Examples will follow.
17

MException Constructor
 Used to create an MException.
 More flexible than error.
 After creation, one or more causes 

can be added using the addCause
function.

 The completed exception can then 
be thrown with throw (which fills in 
the stack data).

 See the ForcedError2.m handout.
18



Handling Errors -- GE-4200 12/6/2011

Copyright C. S. Tritt, Ph.D. 7

Other Related Functions
 getReport – Display exception 

information in a nicely formatted 
way.

 assert – Used to test a specified 
condition during program execution 
and throw an exception if it is false.

 rethrow – typically used when the 
code in the catch block doesn’t know 
how to handle the particular error 
caught. 

19

An Example
 It is difficult to provide a completely 

realistic example of the use of 
MException, try-catch, etc. because 
these features are typically only really 
needed in very large, complex 
programs where the structured 
approach to programming makes 
ordinary error management too 
cumbersome.

 But I’ll try anyway.
20

Example Summary
 See ExceptionExample.m
 This example demonstrates:

 Dealing with exceptions across multiple 
levels of function calls.

 Proper documentation of the exceptions a 
function can throw.

 That catch code should identify and process 
only errors it knows about.

 The use of error, assert and rethrow.
 The use of MException, addCause and throw.
 Argument number and type checking.
 That both “built-in” and programmer 

generated exceptions can occur.
21


