
Handling Errors -- GE-4200 12/6/2011

Copyright C. S. Tritt, Ph.D. 1

Handling Errors 
(v. 1.0)

C. S. Tritt, Ph.D.
December 6, 2011

Structured Programming
 About 35 years ago, programmers 

discovered that code was much more 
reliable and maintainable, if they 
restricted themselves to simple one-
way in, one-way out loops and function 
calls/returns.

 This works fine until there is a serious 
error deep inside a complex program.

 In these exceptional cases, it is often 
best to provide another way out so the 
error can be correctly dealt with higher 
up in the program.

2

A Panic Button
 All modern programming languages 

provide similar “panic button” 
approaches to dealing with errors.

 This is generally referred to “throwing” 
an exception (or error).

 A thrown exception can be caught 
higher up in the program (outside of 
the loop or selection construct or in a 
calling function) or propagated further 
“up” the “stack”.

 If an exception is not eventually 
caught, the program aborts and an 
error message is displayed.

3



Handling Errors -- GE-4200 12/6/2011

Copyright C. S. Tritt, Ph.D. 2

What Functions Don’t Know
 Most programs are interactive, but 

some still run in “batch mode.”
 Functions typically don’t know the 

context within which they are being 
called, so they can’t know the best way 
to respond to an error.

 The calling program or function is in a 
much better position to know the 
appropriate response.

 Exceptions provide a way for functions 
to communicate errors to callers.

4

To Throw or Not to Throw
 Generally throw exceptions when 

the local code doesn’t know how to 
deal with a situation. 

 Generally throw exceptions under 
circumstances that are serious, rare 
and difficult (or impossible) to 
prevent.

 Acceptable circumstances include 
disks becoming full, programming 
errors (like not enough arguments), 
when a bad file name passed is into 
a function, etc.

5

More Information
 To learn more about the details of 

throwing and catching exceptions, 
see Matlab > User’s Guide > 
Programming Fundamentals > Error 
Handling.

 Be careful. When you catch 
exceptions, you are interfering with 
the Matlab’s normal error reporting 
mechanism and this can cause 
confusion.

6



Handling Errors -- GE-4200 12/6/2011

Copyright C. S. Tritt, Ph.D. 3

What Gets Thrown
 Matlab provides a special type of 

object, MException, for throwing 
exceptions.

 MExceptions have 4 fields:
 identifier
 message
 stack
 cause

 The purpose of the MException
object is to store and transmit 
information about the error.

7

A
na

to
m

y 
of

 a
n 

M
Ex

ce
pt

io
n

8

Identifier
 The identifier may not contain white 

space and always has the format: 
component:mnemonic where:
 component indentifies broadest category 

of the source of the error (like Matlab or 
Simulink). It is often a good idea to start 
all your exceptions with a unique 
identifier (like AcmeSoft).

 mnemonic is provides concise information 
about the error (like TooFewArguments).

 Exceptions are typically differentiated 
based on their identifiers.

9



Handling Errors -- GE-4200 12/6/2011

Copyright C. S. Tritt, Ph.D. 4

Message
 The message is a more complete 

description of the exception and its 
cause. It should be written for 
whoever is expected to see it (the 
original programmer, some other 
programmer or the user).

 It can contain white space.
 An example would be “Field 

'Accounts.clientName' not defined.”

10

Stack
 The stack field of the MException

object identifies the line number, 
function, and filename where the 
error was detected.

 It is populated automatically.
 Information on the entire chain of 

function calls leading to the point 
where the error occurred is stored in 
the stack.

 An example is shown on the next 
slide.

11

Cause
 In large, complex programs, it is 

sometimes useful to include 
additional, higher level information 
to exceptions as they “bubble up” 
through the calling functions.

 Use addCause function to add one 
or more lower level MExceptions to 
a higher level MException before it 
is thrown.

 Note that cause is a cell array.
12



Handling Errors -- GE-4200 12/6/2011

Copyright C. S. Tritt, Ph.D. 5

Sample Code & MException

13

% ForcedError.m
%
% This script forces the generation of an MException.
%
% Created by Dr. C. S. Tritt
% Last revised: 12/5/11.

% Start with a clean workspace and command window.
clear all; clc;

try
% Force an error. 
surf

catch myException
% Do nothing. Just leave myException in the command window.

end

The try-catch block will be 
explained in a few slides.

Resulting Exception

14

>> myException

myException = 

MException

Properties:
identifier: 'MATLAB:nargchk:notEnoughInputs'

message: 'Not enough input arguments.'
cause: {0x1 cell}
stack: [2x1 struct]

Methods

Resulting Stack

15

>> myException.stack(1)

ans = 

file: [1x60 char]
name: 'surf'
line: 50

>> myException.stack(2)

ans = 

file: 
'D:\classes\ge4200\TestCode\ForcedError.m'

name: 'ForcedError'
line: 14



Handling Errors -- GE-4200 12/6/2011

Copyright C. S. Tritt, Ph.D. 6

The error function
 The simplest and oldest way to 

throw an exception is with the error
function. It’s syntax is:

error('msgIdent', 'msgString', v1, v2, ..., vN)

 The error function constructs an 
MException with the provided 
messages, automatically populates 
its stack and throws it.

16

try-catch Blocks
 Errors do not have to be caught.
 Errors that aren’t caught cause the 

program to terminate and display an 
error message and/or code.

 try-catch blocks are use to define 
the response (remedial efforts) of 
the program to particular errors 
occurring in particular parts of 
programs as opposed to termination.

 Examples will follow.
17

MException Constructor
 Used to create an MException.
 More flexible than error.
 After creation, one or more causes 

can be added using the addCause
function.

 The completed exception can then 
be thrown with throw (which fills in 
the stack data).

 See the ForcedError2.m handout.
18



Handling Errors -- GE-4200 12/6/2011

Copyright C. S. Tritt, Ph.D. 7

Other Related Functions
 getReport – Display exception 

information in a nicely formatted 
way.

 assert – Used to test a specified 
condition during program execution 
and throw an exception if it is false.

 rethrow – typically used when the 
code in the catch block doesn’t know 
how to handle the particular error 
caught. 

19

An Example
 It is difficult to provide a completely 

realistic example of the use of 
MException, try-catch, etc. because 
these features are typically only really 
needed in very large, complex 
programs where the structured 
approach to programming makes 
ordinary error management too 
cumbersome.

 But I’ll try anyway.
20

Example Summary
 See ExceptionExample.m
 This example demonstrates:

 Dealing with exceptions across multiple 
levels of function calls.

 Proper documentation of the exceptions a 
function can throw.

 That catch code should identify and process 
only errors it knows about.

 The use of error, assert and rethrow.
 The use of MException, addCause and throw.
 Argument number and type checking.
 That both “built-in” and programmer 

generated exceptions can occur.
21


