
Function Handles, etc. -- GE-4200 1/29/2012 

1 

Function Handles, 
Function Functions & 
Persistent Variables 

(v. 1.1) 

C. S. Tritt, Ph.D. 

December 15, 2011 

2 

Preserving Data 

 Normally all the "local" variables 
cease to exist when a function 
returns. 

 Matlab allows particular variables to 
be saved (maintain their values). 

 These variable must be declared as 
persistent prior to use. 

 General form: persistent var1 
var2 etc.  

3 

Using Persistence 

 Persistent variables are often used 
to maintain the "state" of a function. 

 The concept of "state" is widely 
used in engineering and involves the 
values of internal quantities. 

 The temperature and pressure of a 
gas is its state. The state of a 
function can be saved in its 
persistent variables. 



Function Handles, etc. -- GE-4200 1/29/2012 

2 

4 

Persistence Demo 

Comments for function on next slide… 
 
% CancerCells - Counts cancerous cells. Pass a string to reset. 

% 

% The function keeps a running count of the number of cancerous cells 

% found. Pass it a string value (like 'reset') to reset the count to 

% zero. When being reset, this function returns the string. Otherwise,  

% it returns the updated count. 

% 

% Preconditions: Count must be reset prior to incrementing or function 

% will return an empty matrix. 

% 

% Postconditions: Count is saved from call to call and accumulates 

% until reset. 

% 

% Created by C. S. Tritt, Ph.D. 

% Last revised: 12/12/11 (Version 1.1) 

5 

Persistence Demo 

function count = CancerCells(change) 

% … snip … 

   persistent state; 

  

   if ischar(change) % Reset on any string. 

      state = 0; 

      count = change; % Must return something. 

   else 

      state = state + change; 

      count = state; % Normal return of total. 

   end 

   return 

end 

6 

Persistence Demo Dialog 

"Extra" Lines Removed… 
 
>> CancerCells('reset') 

ans = reset 

>> CancerCells(3) 

ans = 3 

>> CancerCells(4) 

ans = 7 

>> CancerCells('Stuff') 

ans = Stuff 

>> CancerCells(4) 

ans = 4 



Function Handles, etc. -- GE-4200 1/29/2012 

3 

7 

Function Handles 
 Allow the information needed to 

execute a particular function to be 
stored in a variable. 

 Created using the @ operator or 
str2func function. 

 Called directly or using feval. 

 Used to pass functions as arguments 
to other functions and in other ways 
(including for creating GUI’s). 

8 

Function Handle Example 
Given the function: 
 
function result = sample_func(x) 

% Function sample_func implements a simple polynomial. 

% 

% Created by Dr. C. S. Tritt, 12/11/06 

 

    result = x.^2 - 2.*x + 1; 

end % function sample_func. 

9 

R
e
s
u
lt
s
 P

ro
d
u
c
e
d
 

>> sample_func(3) 

ans = 

     4 

 

>> hMyHandle = @sample_func 

hMyHandle =  

    @sample_func 

>> hMyHandle(3) 

ans = 

     4 

 

>> hYourHandle = str2func('sample_func') 

hYourHandle =  

    @sample_func 

>> hYourHandle(3) 

ans = 

     4 

 

>> feval(hMyHandle, 3) 

ans = 

     4 



Function Handles, etc. -- GE-4200 1/29/2012 

4 

10 

Function Functions 

 Functions with input arguments 
that are names of other functions. 

 Example 

 fzero – function locates the a zero of 
a function that is passed to it 

 fzero('cos',[0 pi]) – finds the zero of 
the cosine function between 0 and pi 
(which is at pi/2) = 1.57. Note use of 
quotes. 

11 

Using eval and feval 

 The key to its operation are two 
matlab functions eval and feval. 

 eval evaluates a character string as 
though it has been typed into the 
command window: 

 X = eval('sin(pi/4)') 

 feval evaluates a named function at 
for the specific input: 

 X = feval('sin', pi/4) 

12 

Some Matlab F.F.'s 

Function Name Description 

fminbnd Minimize a function. 

fzero Finds the zero of a 

function. 

quad Numerically integrate a 

function. 

ezplot Easy to use function 

plotting 

fplot Plot a function by name. 



Function Handles, etc. -- GE-4200 1/29/2012 

5 

13 

F.F. Example 

 Write a function, called transform, 
that calculates and returns y = f(x -
1) + 1 for an arbitrary function f. 

function y = transform(f,x) 

   y = feval(f, (x - 1)) + 1; 

 

function y = myFunc(x) 

   y = 8 + 0.5*x; 

 

>> transform('myFunc', 2) 

 

ans = 9.5000 

14 

Test Scripts and Stubs 
 During function development, it is 

often useful to create simple test 
scripts that call the function to verify 
its correct operation. 

 During development of large 
programs, it is sometimes useful to 
create simplified versions of functions 
to verify correct operation of calling 
code. These temporary functions are 
called "stubs." 


