
Timers -- GE-4200 1/29/2012

Copyright C. S. Tritt, Ph.D. 1

Matlab Timers (v. 1.4)

Dr. C. S. Tritt

January 25, 2012

Motivation

 There are a number of reasons to
use Matlab’s timing and timers
features. These include:

 Controlling user interfaces.

 Collecting data from patents and/or
devices.

 Controlling devices.

 Simulating situations.

 Evaluating program performance.

2

The pause function

 pause, by itself, causes M-files to

stop and wait for you to press any
key before continuing.

 pause(n) pauses execution for n

seconds before continuing, where n
can be any nonnegative real number.

 The pause resolution is about 0.01
seconds on most systems.

 Ctrl-c escapes the pause.

3

Timers -- GE-4200 1/29/2012

Copyright C. S. Tritt, Ph.D. 2

tic and toc

 The functions, tic and toc, operate
like a stopwatch, with tic starting a
timer and toc stopping it and
returning the elapsed time. Here’s
an example (ticTocTest.m):

4

for n = 1:100

 A = rand(n,n);

 b = rand(n,1);

 tic % Start timer.

 x = A\b;

 t(n) = toc; % Stop it a get interval.

end

plot(t)

Note variations in results on
successive runs.

Controlling GUI’s

 The functions uiwait and uiresume
are designed for use in GUI
programs. They block and resume
MATLAB program execution,
respectively.

 Calling uiwait(h,timeout), where

h is a figure handle and timeout is
in seconds, blocks execution until
uiresume is called, figure h is
deleted, or timeout seconds elapse.

5

Other uiwait Calls

 Calling uiwait(h) blocks execution

until uiresume is called or the figure
h is deleted.

 Simply calling uiwait blocks

execution until uiresume is called or
the current figure is deleted.

 This syntax produces the same
result as uiwait(gcf).

 See WaitTest.m demo program.

6

Timers -- GE-4200 1/29/2012

Copyright C. S. Tritt, Ph.D. 3

 Another uiwait Example

 The following three lines added to
the exit callback of a GUIDE
generated GUI program would
change the displayed text, block
program execution and then delete
the program after 5 seconds:

7

set(handles.theText, 'String', 'Goodbye...');

uiwait(gcbf, 5);

delete(gcbf);

Matlab Timers

 Matlab timers are sophisticated
programming objects that can be
used in a variety of ways to control
the behavior of executing programs.

 Timers can generate calls to specified
functions when they start or stop.
Their period and start delay can be
controlled. They can fire once (single
shot mode) or repeatedly.

 Timers can make things happen.

 8

Basic Timer Steps
 Create a timer.

 Modify its configuration
(settings).

 Start it.

 Let it run to do whatever it was
intended to do.

 Stop it (or let it stop on its own
after its programmed run).

 Delete it.

9

Timers -- GE-4200 1/29/2012

Copyright C. S. Tritt, Ph.D. 4

Simple Example

 Here’s 2 lines of code that creates
and starts a timer and the resulting
output:

10

>> t = timer('ExecutionMode', 'FixedRate', ...

'Period', 3, 'TasksToExecute', 4, ...

'TimerFcn', 'disp(''Hello World!'')');

>> start(t)

Hello World!

Hello World!

Hello World!

Hello World!

>> delete(t) % Delete timer from memory.

>> clear t % Remove timer from workspace.

What’s an Object?

 Matlab objects are accessed like
structures but have states,
properties and can do things (like
call functions).

 Some timer properties can not be set
(they are read only). The
AveragePeriod is such a property.

 Rerun the previous command, but
don’t delete the timer. Then enter:

11

get(t, 'AveragePeriod')

What State are We In?
 Repeat the previous example:

and

 Here are all the properties of our
timer, t (obtained using get(t)):

12

AveragePeriod: 3.0050

BusyMode: 'drop'

ErrorFcn: ''

ExecutionMode: 'fixedRate'

InstantPeriod: 3

Name: 'timer-4‘

ObjectVisibility: 'on'

Period: 3

Running: 'off'

StartDelay: 0

StartFcn: ''

StopFcn: ''

Tag: ''

TasksExecuted: 4

TasksToExecute: 4

TimerFcn: 'disp('Hello World!')'

Type: 'timer'

UserData: []

Timers -- GE-4200 1/29/2012

Copyright C. S. Tritt, Ph.D. 5

Timer Call Back Functions

 In the previous example, the timer
function was simply a Matlab
command.

 It is more common for the timer
function to be a Matlab function
having particular parameters.

 These parameters are:

 An object representing the timer that
called the function.

 An Event
13

Another Example

 Configure the timer to call a
function (myTimerCB in this case):

 This function simply echoes its
parameters:

14

set(t, 'TimerFcn', @myTimerCB)

function myTimerCB(obj, event)

 fprintf('In timer function...\n');

 fprintf('Object (timer) name: %s\n', obj.Name);

 fprintf('Event type: %s\n', event.Type);

 fprintf('Event data: ');

 disp(event.Data);

end

Fragment of Output

15

>> start(t)

In timer function...

Object (timer) name: timer-7

Event type: TimerFcn

Event data: time: [2008 1 27 22 3 25.2770]

In timer function...

Object (timer) name: timer-7

Event type: TimerFcn

Event data: time: [2008 1 27 22 3 28.2880]

Etc.

Notes: Event is structure with fields type (which contains a

string indicating the calling conditions) and data (which is a
structure containing a time field which contains a time

vector). See datestr and datevec regarding the format of the

date information.

Timers -- GE-4200 1/29/2012

Copyright C. S. Tritt, Ph.D. 6

Passing Arguments

 It is possible to specify
arguments to be passed to timer
call back functions by using a cell
array for the function
specification.

 The next slides shows a function
designed to accept such a
parameter, how to set up the call
backs and the resulting output.

16

New Function & Commands

 New Function …

 Command window setup …

17

set(t, 'TimerFcn', {@myTimerCB2, 'Regular Call'})

set(t, 'StartFcn', {@myTimerCB2, 'Start Call'})

set(t, 'StopFcn', {@myTimerCB2, 'Stop Call'})

start(t)

function myTimerCB2(obj, event, myString)

 fprintf('In timer function...\n');

 fprintf('Event type: %s\n', event.Type);

 fprintf('My string: %s\n\n', myString);

end

Note there was an error
here in v. 1.1 of show.

Resulting Output

18

In timer function...

Event type: StartFcn

My string: Start Call

In timer function...

Event type: TimerFcn

My string: Regular Call

… Snip (2 TimerFcn calls) …

In timer function...

Event type: TimerFcn

My string: Regular Call

In timer function...

Event type: StopFcn

My string: Stop Call

Admittedly, the event
type contains the same

information as the string
in this example, but

then, this is just an
example.

Timers -- GE-4200 1/29/2012

Copyright C. S. Tritt, Ph.D. 7

Review of State Diagrams

19

Using Timers with GUI’s
 Egg Timer Example.

 This program demonstrates how to
coordinate timers and GUI components.
The user enters an interval in an edit
box and clicks the start button. The
starting time is displayed in a large
static text box and proceeds to count
down to zero. At which point the process
can be repeated or the program exited.

 See attached documentation for more
information.

20

Egg Timer State Diagram

21

not

Timers -- GE-4200 1/29/2012

Copyright C. S. Tritt, Ph.D. 8

A “Real” Example
 Monte Carlo hospital patient census

simulation.

 Patients arrive at random intervals
(governed by a parameter), patients stay
for random intervals, during their stay
some fraction of patients need infusion
pumps for some fraction of their stay.
The total number of patients and infusion
pumps in use at any given time is
displayed and saved to a file.

 The time scale of 1 second = 6 hours is
applied to the entire simulation.

22

