Brief Introduction to Vision and Images

\qquad

Charles S. Tritt, Ph.D.
January 24, 2012
Version 1.1 \qquad
\qquad

Structure of the Retina

OUTSIDE	There is only one kind of rod. Rods
are very sensitive	

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Color-Wavelength Connection \qquad

\qquad
\qquad
\qquad
\qquad
\qquad
Figure 50-9 from Guyton \& Hall, $10^{\text {th }}$ ed. 5

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Color Displays

- Modern displays typically have three types of pixels (red, green \& blue).
- Their intensities can be varied to display millions of colors.

Note that 100% red plus 100% green produces yellow, etc.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Color Cube

- All hues, saturations \& values combinations occur in or on the cube.
- The shown edge is the full spectrum at full saturations \&
 values.
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

A Particular "Color"

- This example shows how a particular "blue" color can be produced by mixing the primary colors.
- The data range can be 0 to 255 as will be explained shortly.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Raster Graphics

- Raster graphics is the most common way to represent image data in computer files.
- A raster graphic image consists of a
\qquad matrix with each data value in the matrix representing the color of the \qquad correspond location (pixel) in the image.
- Raster images can be binary (pure black and white), color mapped, grayscale or full color.

Typical Axis Directions

Set the axis YDir property to reverse to correctly display most image data.

Binary Images

- Each pixel in a binary image must \qquad be either black or white (or on or off).
- For example, following matrix corresponds to the following image: \qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

Color Mapped Images

- Each pixel value in a color mapped image corresponds to a different color.
- A table describing the correspondence between pixel values and colors is called the image's color map.
- Color maps may contain just a few to thousands of colors. Maps containing 256 and 64 k colors are common.

Color Map Example

\qquad

Image matrix	Image
0001	
0123	
1234	
3344	
Color map	
0 Black	
1 Brown	
2 Orange	
3 Yellow	
4 White	

More About Color Maps

\qquad

- Some image data and file formats (like .gif files) always use color maps \qquad (also known as indexed colors).
- Color mapping was necessary when \qquad computer displays could only display a limited number of colors. \qquad
- Some medical images are inherently gray scale and benefit from color \qquad mapping (called false color).
- Color mapping is sometimes used to present 3D data $(z=f(x, y))$.

More about Color Mapping

- Enter and run the following Matlab code (you may omit the comments): \qquad
load spine \% Loads a saved Matlab workspace figure \% Create \& display a new figure \qquad colormap bone \% Set the color map to bone
image (X) \% Display the image
- Try other color maps, like jet and hot.
- See Matlab Help > Matlab > Graphics > Examples of Images and \qquad Colormaps.

Grayscale Images

\qquad

- In grayscale raster images, pixel values represent shades of gray.
\qquad
- Value ranges of 0 to 1 or 0 to 255 \qquad are common.
- Here's an example: \qquad
\qquad
\qquad

Full Color Representation

- There are a number of ways to represent full color in raster images.
- The most common mimics the physiology of the eye and stores red, green and blue intensities for each pixel (usually in this order and abbreviated RGB or rgb).
\qquad
- Alternatives include cyan, magenta, yellow and black (cmyk); hue, saturation and value (hsv) and 1931 CIE (XYz) approaches.
- Some examples follow.

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

\qquad
\qquad
\qquad
\qquad

Some Matlab Details

- Matlab can store and process full color, grayscale, binary (pure black and white), color mapped, grayscale and full color images.
- Like doing most things Matlab, dealing with images is both easy and hard.
- Matlab provides powerful tools, but their use requires some detailed understanding.

Matlab Data Types

- Matlab can store values in a variety of ways (referred to as data types).
\qquad
- Some data types used in imaging include:
- double - can store floating point values in the range of $\pm 1.0 \times 10^{ \pm 308}$ with 12 or more significant digits. This is the default.
- uint8 and uint16 - can store integer values from 0 to 255 and 0 to 65535.
- int8 and int16 - can store integer values from -128 to 127 and -32768 to 32767.

Image Data Values

- Matlab generally assumes pixel values that are of type uint8 to be in \qquad the 0 to 255 range of this variable type.
- Matlab generally assumes pixels values that are of type double (the default Matlab numeric type) to be in the range 0 to 1 .
- Explicit scaling and type conversion is sometimes necessary.

Loading \& Displaying Images

- To load an existing image into Matlab use the imread function. For example the command $\mathrm{ct}=$
imread('HarvardCT3.gif'); loads the HarvaardCT3.fig image file into an array called ct. Examine the Workspace entry for the ct matrix. It should be a 288 by 377 unit8 matrix.
- Use the imshow function to display an image. Also try image and imagesc.

Loading \& Displaying (cont)

\qquad

- Next use imread to load mri2.jpg into a matrix called mri.
- Examine the Workspace entry for the mri. It should be a 512 by 510 by 3 uint 8 matrix. In this case, a gray scale image is represented in RGB format (due to limitations with the jpg format)
- Use the imshow function to display an image data. Also try image and imagesc.

Loading \& Displaying (cont)

\qquad

- Next use imread to load grace.jpg into \qquad a matrix called grace.
- Examine the Workspace entry for the \qquad mri. It should be a 450 by 600 by 3 uint8 matrix. This is a true RGB \qquad image.
- Use the imshow and image functions \qquad to display an image data.

Exploring an Image

- After displaying an image, you can use the Tools > Data Cursor menu choice and click on parts of the image to see the points indices and
\qquad numeric value(s).
- True grayscale and black and white images have single values at each pixel.
- Load and explore a few other images from ones I sent you and or posted online.

Figures and Axes

\qquad

- The distinction between figures and axis can be useful when dealing with images (and in general).
- The figure command creates a new figure or makes the specified figure
\qquad the current figure.
- The axes command creates a new axis or makes the specified axis the current axis.

Figures and Subplots

- The subplot function (and command syntax) permits the specification and \qquad selection of multiple axes within a single figure.
- It is typically used as hAxis = subplot(rows, cols, current) where rows and cols specified the number of rows and columns the figure should be divided into and current specifies which location for which the axis handle should returned or made current.

Root, gca and gcf

- All figures are children of the root graphical object. This object always has a handle value of 0 .
- gcf returns the handle of the current figure.
- gca returns the handle of the current axis.
\qquad
\qquad
\qquad
\qquad
\qquad

Example

\qquad

- See my SubplotTests.m script for \qquad examples of using:
- The various image display commands \qquad (image, imshow and imagesc).
- The figure and subplot functions. \qquad
- The axis and axes functions.
- Colormaps and the gcf, gca and get \qquad commands.
- To display images.

References

- Medical Physiology, $10^{\text {th }}$ ed. By Guyton \& Hall.
- Spectral Selectivity tutorial by Ed
\qquad Scott and Hollis Bewley at http://photo.net/learn/optics/edscot
\qquad t/spectsel.htm.

